首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The molecular basis for the ability of bacteria to live on caffeine as a sole carbon and nitrogen source is unknown. Pseudomonas putida CBB5, which grows on several purine alkaloids, metabolizes caffeine and related methylxanthines via sequential N-demethylation to xanthine. Metabolism of caffeine by CBB5 was previously attributed to one broad-specificity methylxanthine N-demethylase composed of two subunits, NdmA and NdmB. Here, we report that NdmA and NdmB are actually two independent Rieske nonheme iron monooxygenases with N(1)- and N(3)-specific N-demethylation activity, respectively. Activity for both enzymes is dependent on electron transfer from NADH via a redox-center-dense Rieske reductase, NdmD. NdmD itself is a novel protein with one Rieske [2Fe-2S] cluster, one plant-type [2Fe-2S] cluster, and one flavin mononucleotide (FMN) per enzyme. All ndm genes are located in a 13.2-kb genomic DNA fragment which also contained a formaldehyde dehydrogenase. ndmA, ndmB, and ndmD were cloned as His(6) fusion genes, expressed in Escherichia coli, and purified using a Ni-NTA column. NdmA-His(6) plus His(6)-NdmD catalyzed N(1)-demethylation of caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively. NdmB-His(6) plus His(6)-NdmD catalyzed N(3)-demethylation of theobromine, 3-methylxanthine, caffeine, and theophylline to 7-methylxanthine, xanthine, paraxanthine, and 1-methylxanthine, respectively. One formaldehyde was produced from each methyl group removed. Activity of an N(7)-specific N-demethylase, NdmC, has been confirmed biochemically. This is the first report of bacterial N-demethylase genes that enable bacteria to live on caffeine. These genes represent a new class of Rieske oxygenases and have the potential to produce biofuels, animal feed, and pharmaceuticals from coffee and tea waste.  相似文献   

2.
Caffeine and other N-methylated xanthines are natural products found in many foods, beverages, and pharmaceuticals. Therefore, it is not surprising that bacteria have evolved to live on caffeine as a sole carbon and nitrogen source. The caffeine degradation pathway of Pseudomonas putida CBB5 utilizes an unprecedented glutathione-S-transferase-dependent Rieske oxygenase for demethylation of 7-methylxanthine to xanthine, the final step in caffeine N-demethylation. The gene coding this function is unusual, in that the iron-sulfur and non-heme iron domains that compose the normally functional Rieske oxygenase (RO) are encoded by separate proteins. The non-heme iron domain is located in the monooxygenase, ndmC, while the Rieske [2Fe-2S] domain is fused to the RO reductase gene, ndmD. This fusion, however, does not interfere with the interaction of the reductase with N1- and N3-demethylase RO oxygenases, which are involved in the initial reactions of caffeine degradation. We demonstrate that the N7-demethylation reaction absolutely requires a unique, tightly bound protein complex composed of NdmC, NdmD, and NdmE, a novel glutathione-S-transferase (GST). NdmE is proposed to function as a noncatalytic subunit that serves a structural role in the complexation of the oxygenase (NdmC) and Rieske domains (NdmD). Genome analyses found this gene organization of a split RO and GST gene cluster to occur more broadly, implying a larger function for RO-GST protein partners.  相似文献   

3.
The environmental fate of phenylurea herbicides has received considerable attention in recent decades. The microbial metabolism of N,N-dimethyl-substituted phenylurea herbicides can generally be initiated by mono-N-demethylation. In this study, the molecular basis for this process was revealed. The pdmAB genes in Sphingobium sp. strain YBL2 were shown to be responsible for the initial mono-N-demethylation of commonly used N,N-dimethyl-substituted phenylurea herbicides. PdmAB is the oxygenase component of a bacterial Rieske non-heme iron oxygenase (RO) system. The genes pdmAB, encoding the α subunit PdmA and the β subunit PdmB, are organized in a transposable element flanked by two direct repeats of an insertion element resembling ISRh1. Furthermore, this transposable element is highly conserved among phenylurea herbicide-degrading sphingomonads originating from different areas of the world. However, there was no evidence of a gene for an electron carrier (a ferredoxin or a reductase) located in the immediate vicinity of pdmAB. Without its cognate electron transport components, expression of PdmAB in Escherichia coli, Pseudomonas putida, and other sphingomonads resulted in a functional enzyme. Moreover, coexpression of a putative [3Fe-4S]-type ferredoxin from Sphingomonas sp. strain RW1 greatly enhanced the catalytic activity of PdmAB in E. coli. These data suggested that PdmAB has a low specificity for electron transport components and that its optimal ferredoxin may be the [3Fe-4S] type. PdmA exhibited low homology to the α subunits of previously characterized ROs (less than 37% identity) and did not cluster with the RO group involved in O- or N-demethylation reactions, indicating that PdmAB is a distinct bacterial RO N-demethylase.  相似文献   

4.
To explain the decrease of hydrogen production rate in the batch culture of Rhodobacter sphaeroides S, the activities of enzymes related to the TCA cycle, nitrogenase in cell-free extracts, ATP generation by chromatophores, and ferredoxin were examined at the beginning, middle and end of the hydrogen production phase of batch culture. The activities of TCA cycle enzymes, nitrogenase and ATP generation were found to remain at almost the same level throughout the culture, while ferredoxin activity decreased linearly with time. In addition, by bubbling N2 gas into the culture broth at the end of the culture, the hydrogen production rate was restored to the initial level through the increase of the ferredoxin activity. Although the decrease of ferredoxin activity and its restoration by bubbling N2 gas remained unexplained, ferredoxin activity was considered to be a key function in the nitrogenase system for H2 production by this photosynthetic bacterium.  相似文献   

5.
The ability of bacteria to grow on caffeine as sole carbon and nitrogen source has been known for over 40 years. Extensive research into this subject has revealed two distinct pathways, N‐demethylation and C‐8 oxidation, for bacterial caffeine degradation. However, the enzymological and genetic basis for bacterial caffeine degradation has only recently been discovered. This review article discusses the recent discoveries of the genes responsible for both N‐demethylation and C‐8 oxidation. All of the genes for the N‐demethylation pathway, encoding enzymes in the Rieske oxygenase family, reside on 13.2‐kb genomic DNA fragment found in Pseudomonas putida CBB5. A nearly identical DNA fragment, with homologous genes in similar orientation, is found in Pseudomonas sp. CES. Similarly, genes for C‐8 oxidation of caffeine have been located on a 25.2‐kb genomic DNA fragment of Pseudomonas sp. CBB1. The C‐8 oxidation genes encode enzymes similar to those found in the uric acid metabolic pathway of Klebsiella pneumoniae. Various biotechnological applications of these genes responsible for bacterial caffeine degradation, including bio‐decaffeination, remediation of caffeine‐contaminated environments, production of chemical and fuels and development of diagnostic tests have also been demonstrated.  相似文献   

6.
Sphingomonads DC-6 and DC-2 degrade the chloroacetanilide herbicides alachlor, acetochlor, and butachlor via N-dealkylation. In this study, we report a three-component Rieske non-heme iron oxygenase (RHO) system catalyzing the N-dealkylation of these herbicides. The oxygenase component gene cndA is located in a transposable element that is highly conserved in the two strains. CndA shares 24 to 42% amino acid sequence identities with the oxygenase components of some RHOs that catalyze N- or O-demethylation. Two putative [2Fe-2S] ferredoxin genes and one glutathione reductase (GR)-type reductase gene were retrieved from the genome of each strain. These genes were not located in the immediate vicinity of cndA. The four ferredoxins share 64 to 72% amino acid sequence identities to the ferredoxin component of dicamba O-demethylase (DMO), and the two reductases share 62 to 65% amino acid sequence identities to the reductase component of DMO. cndA, the four ferredoxin genes, and the two reductases genes were expressed in Escherichia coli, and the recombinant proteins were purified using Ni-affinity chromatography. The individual components or the components in pairs displayed no activity; the enzyme mixture showed N-dealkylase activities toward alachlor, acetochlor, and butachlor only when CndA-His6 was combined with one of the four ferredoxins and one of the two reductases, suggesting that the enzyme consists of three components, a homo-oligomer oxygenase, a [2Fe-2S] ferredoxin, and a GR-type reductase, and CndA has a low specificity for the electron transport component (ETC). The N-dealkylase utilizes NADH, but not NADPH, as the electron donor.  相似文献   

7.
We analyzed the metaproteome of the bacterial community resident in the hindgut paunch of the wood-feeding ‘higher'' termite (Nasutitermes) and identified 886 proteins, 197 of which have known enzymatic function. Using these enzymes, we reconstructed complete metabolic pathways revealing carbohydrate transport and metabolism, nitrogen fixation and assimilation, energy production, amino-acid synthesis and significant pyruvate ferredoxin/flavodoxin oxidoreductase protein redundancy. Our results suggest that the activity associated with these enzymes may have more of a role in the symbiotic relationship between the hindgut microbial community and its termite host than activities related to cellulose degradation.  相似文献   

8.
Carbohydrate-active enzymes are involved in the degradation, biosynthesis, and modification of carbohydrates and vary with the diversity of carbohydrates. The glycoside hydrolase (GH) family 31 is one of the most diverse families of carbohydrate-active enzymes, containing various enzymes that act on α-glycosides. However, the function of some GH31 groups remains unknown, as their enzymatic activity is difficult to estimate due to the low amino acid sequence similarity between characterized and uncharacterized members. Here, we performed a phylogenetic analysis and discovered a protein cluster (GH31_u1) sharing low sequence similarity with the reported GH31 enzymes. Within this cluster, we showed that a GH31_u1 protein from Lactococcus lactis (LlGH31_u1) and its fungal homolog demonstrated hydrolytic activities against nigerose [α-D-Glcp-(1→3)-D-Glc]. The kcat/Km values of LlGH31_u1 against kojibiose and maltose were 13% and 2.1% of that against nigerose, indicating that LlGH31_u1 has a higher specificity to the α-1,3 linkage of nigerose than other characterized GH31 enzymes, including eukaryotic enzymes. Furthermore, the three-dimensional structures of LlGH31_u1 determined using X-ray crystallography and cryogenic electron microscopy revealed that LlGH31_u1 forms a hexamer and has a C-terminal domain comprising four α-helices, suggesting that it contributes to hexamerization. Finally, crystal structures in complex with nigerooligosaccharides and kojibiose along with mutational analysis revealed the active site residues involved in substrate recognition in this enzyme. This study reports the first structure of a bacterial GH31 α-1,3-glucosidase and provides new insight into the substrate specificity of GH31 enzymes and the physiological functions of bacterial and fungal GH31_u1 members.  相似文献   

9.
N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.  相似文献   

10.
Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid l-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O3- and the O6-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O3-demethylation and the O6-demethylation are members of the FeII/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O3-demethylation. We report that demethylation of thebaine at the O6-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O6-demethylation of thebaine by an FeII/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O6-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O6-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified.  相似文献   

11.
The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.  相似文献   

12.

Background

Two sequential enzymes in the production of sialic acids, N-acetyl-D-glucosamine 2-epimerase (GlcNAc 2-epimerase) and N-acetyl-D-neuraminic acid aldolase (Neu5Ac aldolase), were overexpressed as double-tagged gene fusions. Both were tagged with glutathione S-transferase (GST) at the N-terminus, but at the C-terminus, one was tagged with five contiguous aspartate residues (5D), and the other with five contiguous arginine residues (5R).

Results

Both fusion proteins were overexpressed in Escherichia coli and retained enzymatic activity. The fusions were designed so their surfaces were charged under enzyme reaction conditions, which allowed isolation and immobilization in a single step, through a simple capture with either an anionic or a cationic exchanger (Sepharose Q or Sepharose SP) that electrostatically bound the 5D or 5R tag. The introduction of double tags only marginally altered the affinity of the enzymes for their substrates, and the double-tagged proteins were enzymatically active in both soluble and immobilized forms. Combined use of the fusion proteins led to the production of N-acetyl-D-neuraminic acid (Neu5Ac) from N-acetyl-D-glucosamine (GlcNAc).

Conclusion

Double-tagged gene fusions were overexpressed to yield two enzymes that perform sequential steps in sialic acid synthesis. The proteins were easily immobilized via ionic tags onto ionic exchange resins and could thus be purified by direct capture from crude protein extracts. The immobilized, double-tagged proteins were effective for one-pot enzymatic production of sialic acid.  相似文献   

13.
UDP-N,N′-diacetylbacillosamine (UDP-diNAcBac) is a unique carbohydrate produced by a number of bacterial species and has been implicated in pathogenesis. The terminal step in the formation of this important bacterial sugar is catalyzed by an acetyl-CoA (AcCoA)-dependent acetyltransferase in both N- and O-linked protein glycosylation pathways. This bacterial acetyltransferase is a member of the left-handed β-helix family and forms a homotrimer as the functional unit. Whereas previous endeavors have focused on the Campylobacter jejuni acetyltransferase (PglD) from the N-linked glycosylation pathway, structural characterization of the homologous enzymes in the O-linked glycosylation pathways is lacking. Herein, we present the apo-crystal structures of the acetyltransferase domain (ATD) from the bifunctional enzyme PglB (Neisseria gonorrhoeae) and the full-length acetyltransferase WeeI (Acinetobacter baumannii). Additionally, a PglB-ATD structure was solved in complex with AcCoA. Surprisingly, this structure reveals a contrasting binding mechanism for this substrate when compared with the AcCoA-bound PglD structure. A comparison between these findings and the previously solved PglD crystal structures illustrates a dichotomy among N- and O-linked glycosylation pathway enzymes. Based upon these structures, key residues in the UDP-4-amino and AcCoA binding pockets were mutated to determine their effect on binding and catalysis in PglD, PglB-ATD, and WeeI. Last, a phylogenetic analysis of the aforementioned acetyltransferases was employed to illuminate the diversity among N- and O-linked glycosylation pathway enzymes.  相似文献   

14.
Catabolism of caffeine (1,3,7-trimethylxanthine) in microorganisms commences via two possible mechanisms: demethylation and oxidation. Through the demethylation route, the major metabolite formed in fungi is theophylline (1,3-dimethylxanthine), whereas theobromine (3,7-dimethylxanthine) is the major metabolite in bacteria. In certain bacterial species, caffeine has also been oxidized directly to trimethyl uric acid in a single step. The conversion of caffeine to its metabolites is primarily brought about by N-demethylases (such as caffeine demethylase, theobromine demethylase and heteroxanthinedemethylase), caffeine oxidase and xanthine oxidase that are produced by several caffeine-degrading bacterial species such as Pseudomonas putida and species within the genera Alcaligenes, Rhodococcus and Klebsiella. Development of biodecaffeination techniques using these enzymes or using whole cells offers an attractive alternative to the present existing chemical and physical methods removal of caffeine, which are costly, toxic and non-specific to caffeine. This review mainly focuses on the biochemistry of microbial caffeine degradation, presenting recent advances and the potential biotechnological application of caffeine-degrading enzymes.  相似文献   

15.
The complete primary structure of a Streptomyces griseus (ATCC 13273) 7Fe ferredoxin, which can couple electron transfer between spinach ferredoxin reductase and S. griseus cytochrome P-450soy for NADPH-dependent substrate oxidation, has been determined by Edman degradation of the whole protein and peptides derived by Staphylococcus aureus V8 proteinase and trypsin digestion. The protein consists of 105 amino acids and has a calculated molecular weight, including seven irons and eight sulfurs, of 12291. The ferredoxin sequence is highly homologous (73%) to that of the 7Fe ferredoxin from Mycobacterium smegmatis. The N-terminal half of the sequence, which is the FeS clusters binding domain, has more than 50% homology with other 7Fe ferredoxins. In particular, the seven cysteines known from the crystal structure of Azotobacter vinelandii ferredoxin I to be involved in binding the two FeS clusters are conserved.  相似文献   

16.
The effects of post-treatments with caffeine in G2 on the frequency of chromosomal aberrations induced by thiotepa, mitomycin C and N-methyl-N-nitro-N′-nitrosoguanidine were studied in human lymphocytes. Caffeine was found to potentiate the frequency of chromatid aberrations induced by all 3 S-dependent agents tested; the most striking enhancement being obtained when caffeine was present during the last 1.5 h before harvesting. Post-treatments in G2 with 3-aminobenzamide had no influence on the aberration frequency induced by thiotepa and N-methyl-N-nitro-N′-nitrosoguanidine.  相似文献   

17.
The fungus Cunninghamella bainieri effects the oxidative N-demethylation of aminopyrine, O-demethylation of 4-nitroanisole and anisole, the aryl hydroxylation of anisole, aniline, and naphthalene, and the reduction of nitro and azo groups. The hydroxylation of 4-[2H]-anisole and 2-[2H]-anisole proceeds with migration and retention of isotopic hydrogen (NIH shift). The above reactions and the formation of the trans-dihydrodiol of naphthalene and the incorporation of oxygen-18 from 18O2 into the trans-dihydrodiol and hydroxylated anisole are characteristic of reactions catalyzed by the cytochrome P450 monooxygenases of hepatic microsomes. The product ratios in these hydroxylations are very similar to those obtained using liver microsomes providing further evidence that the C. bainieri monooxygenase enzymes are similar to the liver monooxygenases. Furthermore, an epoxide hydrase enzyme similar to that present in hepatic microsomes must also be present in C. bainieri.  相似文献   

18.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR), which contains multiple mannose 6-phosphate (Man-6-P) binding sites that map to domains 3, 5, and 9 within its 15-domain extracytoplasmic region, functions as an efficient carrier of Man-6-P-containing lysosomal enzymes. To determine the types of phosphorylated N-glycans recognized by each of the three carbohydrate binding sites of the CI-MPR, a phosphorylated glycan microarray was probed with truncated forms of the CI-MPR. Surface plasmon resonance analyses using lysosomal enzymes with defined N-glycans were performed to evaluate whether multiple domains are needed to form a stable, high affinity carbohydrate binding pocket. Like domain 3, adjacent domains increase the affinity of domain 5 for phosphomannosyl residues, with domain 5 exhibiting ∼60-fold higher affinity for lysosomal enzymes containing the phosphodiester Man-P-GlcNAc when in the context of a construct encoding domains 5–9. In contrast, domain 9 does not require additional domains for high affinity binding. The three sites differ in their glycan specificity, with only domain 5 being capable of recognizing Man-P-GlcNAc. In addition, domain 9, unlike domains 1–3, interacts with Man8GlcNAc2 and Man9GlcNAc2 oligosaccharides containing a single phosphomonoester. Together, these data indicate that the assembly of three unique carbohydrate binding sites allows the CI-MPR to interact with the structurally diverse phosphorylated N-glycans it encounters on newly synthesized lysosomal enzymes.  相似文献   

19.
Horseradish peroxidase and metmyoglobin catalyze the H2O2-supported N-demethylation of N,N-dimethylaniline and N,N-dimethyl-p-toluidine. The catalytic activities of horseradish peroxidase are more than 100-fold larger than those of metmyoglobin or those previously reported for liver microsomal cytochrome P-450. Distinct free radical species of these N-methyl substrates were detected with both catalysts. These findings establish the general validity of a recently proposed free radical mechanism of oxidative N-demethylation (Griffin, B. W., and Ting, P. L., Biochemistry (1978), 2206–2211), which is quite different from that previously suggested for the analogous cytochrome P-450-dependent reactions.  相似文献   

20.
Horseradish peroxidase-catalyzed N-demethylation of aminopyrine and dimethylaniline results in generation of free radical intermediates which can interact with glutathione (GSH) to form a glutathione radical. This can either dimerize to yield glutathione disulfide or react with O2 to form oxygenated products of glutathione. Ethylmorphine is not a substrate in the peroxidase-mediated reaction, and free radical intermediates which react with GSH, are not formed from aminopyrine and dimethylaniline when the horseradish peroxidase/H2O2 system is replaced by liver microsomes and NADPH. Therefore, it appears unlikely that formation of free radical intermediates can be responsible for the depletion of GSH observed during N-demethylation of several drugs in isolated liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号