首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的检测中间丝蛋白Nestin(巢蛋白)在不同病程糖尿病大鼠肾组织中的表达,探讨Nestin表达变化与糖尿病肾病发生发展的关系。方法腹腔注射链脲佐菌素(STZ)复制糖尿病(DM)大鼠模型,分别于第2、4、8、12和16周检测血糖、血尿素氮及24h尿蛋白量,HE染色观察肾脏病理学改变,免疫组织化学及流式细胞术检测Nestin表达水平。结果 HE染色可见,与对照组相比,DM组大鼠从第2周起出现肾小球体积增大;至8周时系膜基质明显增多,系膜区增宽;12、16周时肾小球呈分叶状,肾小管上皮细胞可见明显空泡变性及坏死。免疫组织化学和流式细胞术结果显示,DM各组Nestin表达水平均高于正常对照组,且在第8周时达高峰,而后逐渐下降。结论在不同病程糖尿病大鼠模型中,中间丝蛋白Nestin的表达先升高,而后降低,可能参与了糖尿病肾损害的发生与发展。  相似文献   

2.
3.
4.
To study the biological function of Tetrahymena intermediate-type filament protein (a 49K protein), we examined the immunofluorescence localization of 49K protein within Tetrahymena cells. The results showed that the immunofluorescence was localized in the oral apparatus, mitochondria and mucocysts. Among them, the fluorescence in the oral apparatus was of high interest in its unique region and vicissitude in the cell cycle: a tau-shaped region of the oral apparatus intensely fluoresced during interphase, but the fluorescence completely disappeared during dividing phase. The tau-shaped region corresponded to 'posterior connectives' and the root part of 'deep fiber', to the conjunction parts of microtubule bundles. In the those parts, there was electron-dense material in the microtubule bundles. Hence, it is conceivable that 49K protein corresponds to the dense material and has a function of microtubule bundle conjunction. On the other hand, disappearance of immunofluorescence from the old oral apparatus of most dividing cells reflected the oral apparatus regression and remodelling which have been known as necessary sequential events in the cell cycle. We observed that oral fluorescence disappeared concurrently with the onset of oral regression and of constriction of division furrow, whereas at a late dividing stage immunofluorescence began to appear simultaneously in both new and old oral apparatus. Thus, the 49K protein may play a crucial role(s) not only in the morphogenesis of oral primordia but also in the transient morphogenesis in the old oral system.  相似文献   

5.
Arsenic is a naturally occurring element that is present in food, soil, and water. Inorganic arsenic can accumulate in human skin and is associated with increased risk of skin cancer. Oxidative stress due to arsenic exposure is proposed as one potential mode of carcinogenic action. The purpose of this study is to investigate the specific reactive oxygen and nitrogen species that are responsible for the arsenic-induced oxidative damage to DNA and protein. Our results demonstrated that exposure of human keratinocytes to trivalent arsenite caused the generation of 8-hydroxyl-2′-deoxyguanine (8-OHdG) and 3-nitrotyrosine (3-NT) in a concentration- and time-dependent manner. Pentavalent arsenate had similar effects, but to a significantly less extent. The observed oxidative damage can be suppressed by pre-treating cells with specific antioxidants. Furthermore, we found that pre-treating cells with Nω-nitro-l-arginine methyl ester (l-NAME), an inhibitor of nitric oxide synthase (NOS), or with 5,10,15,20-tetrakis (N-methyl-4′-pyridyl) porphinato iron (III) chloride (FeTMPyP), a decomposition catalyst of peroxynitrite, suppressed the generation of both 8-OHdG and 3-NT, which indicated that peroxynitrite, a product of the reaction of nitric oxide and superoxide, played an important role in arsenic-induced oxidative damage to both DNA and protein. These findings highlight the involvement of peroxynitrite in the molecular mechanism underlying arsenic-induced human skin carcinogenesis.  相似文献   

6.
We report here the detection of a high molecular weight (greater than 400,000) cytoskeletal protein in the myogenic and neural tube derived structures of the chick embryo using a monoclonal antibody, F51H2. Immunohistological analysis reveals that this protein is concentrated in the myotome part of the somites, in the heart primordium, and in the neural tube at the end of the 2nd day of incubation. In cultured fibroblasts, the antibody appeared to decorate a filamentous network, although immunoreactivity was not detected on mesenchymal cells in situ. This network was also observed in cultured myoblasts where it has been demonstrated to be coincident to that of desmin. In colchicine-treated cells the immunoreactivity coincided with the perinuclear cap formed by the collapse of intermediate filaments (IFs). Immunoblot experiments confirmed the early distribution of F51H2 antigen in muscle and nerve tissues and its concentration in a salt-resistant IF-rich fraction of muscle tissues. In addition, there is a progressive loss of immunoreactivity during development. The immunoreactive band on sodium dodecyl sulfate gels was faint in tissues from newly hatched chickens and absent in adult tissues. It is suggested that the monoclonal antibody observed herein reacts with an embryo specific high molecular weight protein that is associated with IFs.  相似文献   

7.
Replication protein A (RPA) is a heterotrimeric, single-stranded DNA-binding complex comprised of 70-kDa (RPA1), 32-kDa (RPA2), and 14-kDa (RPA3) subunits that is essential for DNA replication, recombination, and repair in eukaryotes. In addition, recent studies using vertebrate model systems have suggested an important role for RPA in the initiation of cell cycle checkpoints following exposure to DNA replication stress. Specifically, RPA has been implicated in the recruitment and activation of the ATM-Rad3-related protein kinase, ATR, which in conjunction with the related kinase, ATM (ataxia-telangiectasia-mutated), transmits checkpoint signals via the phosphorylation of downstream effectors. In this report, we have explored the effects of RPA insufficiency on DNA replication, cell survival, and ATM/ATR-dependent signal transduction in response to genotoxic stress. RNA interference-mediated suppression of RPA1 caused a slowing of S phase progression, G2/M cell cycle arrest, and apoptosis in HeLa cells. RPA-deficient cells demonstrated high levels of spontaneous DNA damage and constitutive activation of ATM, which was responsible for the terminal G2/M arrest phenotype. Surprisingly, we found that neither RPA1 nor RPA2 were essential for the hydroxyurea- or UV-induced phosphorylation of the ATR substrates CHK1 and CREB (cyclic AMP-response element-binding protein). These findings reveal that RPA is required for genomic stability and suggest that activation of ATR can occur through RPA-independent pathways.  相似文献   

8.
Z W Yang  J A Babitch 《Biochemistry》1988,27(18):7038-7045
Glial fibrillary acidic protein (GFAP) is soluble in low ionic strength solutions but shows a strong tendency toward assembly with increasing ionic strength as revealed by electron microscopy and turbidity measurements. Increasing K+, Na+, and Li+ concentrations cause an increase followed by a decrease in GFAP turbidity with a maximum at 200 mM, but their effects are much weaker than effects of divalent cations at the same ionic strength. Ca2+, Mg2+, Mn2+, and Ba2+ promote assembly at millimolar concentrations, and 10 microM Cu2+ causes rapid aggregation. The critical concentration for GFAP assembly was 0.08 +/- 0.04 mg/mL in 2 mM Tris-HCl, 60 mM KCl, and 1 mM CaCl2, pH 6.8. The Mr 38,000 rod domain of GFAP obtained by limited chymotryptic digestion is more soluble in 100 mM imidazole hydrochloride buffer, pH 6.8, than the intact molecule, and removal of the end pieces greatly reduces the ability of GFAP to form filaments. BNPS-skatole (2-[(2-nitrophenyl)sulfenyl]-3-methyl-3-bromoindolenine) treatment releases a Mr 30,000 N-terminus and a Mr 20,000 C-terminus. The Mr 30,000 polypeptide shows a higher affinity than the Mr 20,000 fragment for intact GFAP. Arginine and lysine at low concentrations slightly accelerate GFAP assembly, but above 100 mM both amino acids inhibit assembly. ATP, GTP, CTP, and UTP do not show significant effects on GFAP assembly. Dephosphorylation by alkaline phosphatase slightly reduces the assembly ability of GFAP, but phosphatase-treated GFAP still is assembly competent.  相似文献   

9.
10.
A monoclonal antibody was produced, using as antigen a BHK-21 cytoskeletal preparation enriched in intermediate filaments (IF) and their associated proteins. This antibody reacted exclusively with a reproducible set of 70-280 kD polypeptides present in minor quantities in this preparation, as detected by immunoblot analysis. Based upon several criteria, this immunologically related group of polypeptides was designated as IFAP-70/280 kD (IF-Associated Protein): (1) it co-isolated with IF in vitro, (2) it co-localized (by both immunofluorescence and immunoelectron microscopy) with IF in situ in all stages of cell spreading, and (3) it segregated in vitro with the 54/55 kD (desmin/vimentin) structural IF subunit proteins of BHK cells through two cycles of in vitro disassembly/assembly. Immunogold labeling further localized IFAP-70/280 kD to regions of parallel or loosely bundled IF in situ, suggesting a role in regulating the supramolecular organization of IF. When this monoclonal antibody was used for double-label immunofluorescence observations of colchicine-treated BHK cells, it demonstrated the presence of colchicine-sensitive and colchicine-insensitive IF. Anti-IFAP-70/280 kD localized entirely to the drug-induced juxtanuclear IF cap, while a polyclonal antibody directed against the desmin/vimentin structural IF subunits and the previously characterized monoclonal anti-IFAP-300 kD [Yang et al., 1985; J. Cell Biol. 100:620] localized to both the juxtanuclear IF cap and a colchicine-insensitive IF network peripheral to the cap in the same cells. The colchicine-insensitive IF pattern often exhibited similarities to that observed for the actin-based stress fiber system, suggesting that stress fiber association may be an additional factor in IF organization.  相似文献   

11.
Peripherin is a 57 kDa Type III intermediate filament protein associated with neurite extension, neuropathies such as amyotrophic lateral sclerosis, and cranial nerve and dorsal root projections. However, knowledge of peripherin expression in the CNS is limited. We have used immunoperoxidase histochemistry to characterise peripherin expression in the mouse hindbrain, including the inferior colliculus, pons, medulla and cerebellum. Peripherin immunolabelling was observed in the nerve fibres and nuclei that are associated with all cranial nerves [(CN) V–XII] in the hindbrain. Peripherin expression was prominent in the cell bodies and axons of the mesenchephalic trigeminal nucleus and the pars compacta region of nucleus ambiguus, and in the fibres that comprise the solitary tract, the descending spinal trigeminal tract and the trigeminal and facial nerves. A small proportion of peripherin positive fibres in CN VIII likely arise from cochlear type II spiral ganglion neurons. Peripherin positive fibres were also observed in the inferior cerebellar peduncle and folia in the intermediate zone of the cerebellum. Antibody specificity was confirmed by absence of labelling in hindbrain tissue from peripherin knockout mice. This study shows that in the adult mouse hindbrain, peripherin is expressed in discrete neuronal subpopulations that have sensory, motor and autonomic functions.  相似文献   

12.
Methylglyoxal (MGO) is a cytotoxic metabolite and modifies tissue proteins through the Maillard reaction, resulting in advanced glycation end products (AGEs), which can alter protein structure and functions. Several MGO-derived AGEs have been described, including argpyrimidine, a fluorescent product of the MGO reaction with arginine residues. Herein, we evaluated the cytotoxic role of MGO in human lens epithelial cell line (HLE-B3). HLE-B3 cells were exposed to 400 μM MGO in the present or absence of pyridoxamine for 24 h. We then examined the formation of argpyrimidine, apoptosis and oxidative stress in HLE-B3 cells. In MGO-treated HLE-B3 cells, the accumulation of argpyrimidine was markedly increased, and caspase-3 and 8-hydroxydeoxyguanosine (8-OHdG) were highly expressed, which paralleled apoptotic cell death. However, pyridoxamine (AGEs inhibitor) prevented the argpyrimidine formation and apoptosis of MGO-treated HLE-B3 cells. These results suggested that the accumulation of argpyrimidine and oxidative DNA damage caused by MGO are involved in apoptosis of HLE-B3 cells.  相似文献   

13.
Whether the highly dynamic structure of the vimentin intermediate filament (IF) cytoskeleton responds to cues from cellular organelles, and what proteins might participate in such events is largely unknown. We have shown previously that the Golgi protein formiminotransferase cyclodeaminase (FTCD) binds to vimentin filaments in vivo and in vitro, and that overexpression of FTCD causes dramatic rearrangements of the vimentin IF cytoskeleton (Gao and Sztul, J. Cell Biol. 152, 877-894, 2001). Using real-time imaging, we now show that FTCD causes bundling of individual thinner vimentin filaments into fibers and that the bundling always originates at the Golgi. FTCD appears to be the molecular "glue" since FTCD cross-links vimentin filaments in vitro. To initiate the analysis of structural determinants required for FTCD function in vimentin dynamics, we used structure-based design to generate individual formiminotransferase (FT) and cyclodeaminase (CD) domains, and to produce an enzymatically inactive FTCD. We show that the intact octameric structure is required for FTCD binding to vimentin filaments and for promoting filament assembly, but that eliminating enzymatic activity does not affect FTCD effects on the vimentin cytoskeleton. Our findings indicate that the Golgi protein FTCD is a potent modulator of the vimentin IF cytoskeleton, and suggest that the Golgi might act as a reservoir for proteins that regulate cytoskeletal dynamics.  相似文献   

14.
Chloroacetaldehyde (CAA) is a metabolite of the human carcinogen vinyl chloride. CAA produces several types of DNA adducts including the exocyclic base adducts 3,N(4)-ethenocytosine, 1,N(6)-ethenoadenine, N(2),3-ethenoguanine, and 1,N(2)-ethenoguanine. Adducts of CAA with 5-methylcytosine have not yet been characterized. Here we have analyzed the mutational spectra produced by CAA in the supF gene of the pSP189 shuttle vector when present in either an unmethylated or CpG-methylated state. The vectors were replicated in human nucleotide excision repair-deficient XP-A fibroblasts. The mutational spectra obtained with the unmethylated and methylated supF target genes were generally similar with a preponderance of C/G to T/A transitions and C/G to A/T transversions. CAA-induced DNA adducts were mapped along the supF gene by using thermostable thymine DNA glycosylase (TDG) in conjunction with ligation-mediated PCR or by a Taq polymerase stop assay. Prominent CAA-induced TDG-sensitive sites were seen at several CpG positions but were independent of methylation. Methylated CpG sites were sites of CAA-induced mutations but were not the major mutational hotspots. Taq polymerase arrest sites were observed at numerous sequence positions in the supF gene and reflected the rather broad distributions of mutations along the sequence. We conclude that methylated CpG sites are not preferential targets for chloroacetaldehyde-induced mutagenesis.  相似文献   

15.
Proteolytic digestion of bovine beta-lactoglobulin by trypsin yielded four peptide fragments with bactericidal activity. The peptides were isolated and their sequences were found as follows: VAGTWY (residues 15-20), AASDISLLDAQSAPLR (residues 25-40), IPAVFK (residues 78-83) and VLVLDTDYK (residues 92-100). The four peptides were synthesized and found to exert bactericidal effects against the Gram-positive bacteria only. In order to understand the structural requirements for antibacterial activity, the amino acid sequence of the peptide VLVLDTDYK was modified. The replacement of the Asp (98) residue by Arg and the addition of a Lys residue at the C-terminus yielded the peptide VLVLDTRYKK which enlarged the bactericidal activity spectrum to the Gram-negative bacteria Escherichia coli and Bordetella bronchiseptica and significantly reduced the antibacterial capacity of the peptide toward Bacillus subtilis. By data base searches with the sequence VLVLDTRYKK a high homology was found with the peptide VLVATLRYKK (residues 55-64) of human blue-sensitive opsin, the protein of the blue pigment responsible for color vision. A peptide with this sequence was synthesized and assayed for bactericidal activity. VLVATLRYKK was strongly active against all the bacterial strains tested. Our results suggest a possible antimicrobial function of beta-lactoglobulin after its partial digestion by endopeptidases of the pancreas and show moreover that small targeted modifications in the sequence of beta-lactoglobulin could be useful to increase its antimicrobial function.  相似文献   

16.
Through analysis of a reported microarray-based high-throughput examination, we found that miR-1275 was significantly down-regulated in nasopharyngeal carcinoma (NPC). While its role and mechanism participated in NPC progression are still little known. Here, we explored the effect of miR-1275 on the progression of NPC. Results demonstrated that miR-1275 was markedly down-regulated in NPC tissues and cell lines. MiR-1275 markedly repressed cell growth as confirmed by CCK8 and colony formation assay, via inhibition of HOXB5 in NPC cell lines. Moreover, miR-1275 suppressed G1/S transition via inhibition of HOXB5. Further, oncogene HOXB5 was evidenced to be a potential target of miR-1275, and its expression was conversely correlated with miR-1275 expression in NPC. Collectively, our study indicated that miR-1275, a tumor suppressor, played a critical effect on NPC progression via inhibition of cell growth, and suppression of G1/S transition by targeting oncogenic HOXB5.  相似文献   

17.
Monoclonal antibodies were isolated from mice immunized with chicken gizzard desmin. Antibodies reacting with desmin on immunoblots and selectively decorating chicken and rat intestinal smooth muscle as well as the Z-line in striated muscle, were selected for this study. Based on their staining pattern on cryostat sections of chicken and rat cerebellum, spleen, kidney, aorta and femoral artery, monoclonal supernatants could be divided in three groups: (i) antibodies decorating astrocytes and vascular smooth muscle; (ii) antibodies decorating only vascular smooth muscle; (iii) antibodies decorating only astrocytes. Antibodies in group (i) and (iii) also stained GFA-negative Bergmann glia in chicken cerebellum. It is proposed that desmin may vary depending on the histological localization.  相似文献   

18.
Because knockout of the vimentin gene in mice did not produce an immediately obvious, overt, or lethal specific phenotype, the conjecture was made that the mutation affects some subtle cellular functions whose loss manifests itself only when the mutant animals are exposed to stress. In order to substantiate this idea in a tractable in vitro system, primary embryo fibroblasts from wildtype (V(+/+)) and vimentin-knockout (V(-/-)) mice were compared with regard to their growth behavior under the pseudophysiologic conditions of conventional cell culture. Whereas in the course of serial transfer, the V(+/+) fibroblasts progressively reduced their growth potential, passed through a growth minimum around passage 12 (crisis), and, as immortalized cells, resumed faster growth, the V(-/-) fibroblasts also cut down their growth rate but much earlier, and they either did not immortalize or did so at an almost undetectable rate. Cells withdrawing from the cell cycle showed increased concentrations of reactive oxygen species and signs of oxidative damage: enlarged and flattened morphology, large nuclear volume, reinforced stress fiber system as a result of increased contents of actin and associated proteins, prominent extracellular matrix, and perinuclear masses of pathological forms of mitochondria with low membrane potential. The differences in the cell cycle behavior of the V(+/+) and V(-/-) cells in conjunction with the morphologic changes observed in mitotically arrested cells suggests a protective function of vimentin against oxidative cell damage. Because vimentin exhibits affinity for and forms crosslinkage products with recombinogenic nuclear as well as mitochondrial DNA in intact cells, it is credible to postulate that vimentin plays a role in the recombinogenic repair of oxidative damage inflicted on the nuclear and mitochondrial genome throughout the cells' replicative lifespan. Recombinational events mediated by vimentin also appear to take place when the cells pass through the genetically unstable state of crisis to attain immortality. The residual immortalization potential of V(-/-) fibroblasts might be attributable to their capacity to synthesize, in place of vimentin, the tetrameric form of a lacZ fusion protein carrying, in addition to a nuclear localization signal, the N-terminal 59 amino acids of vimentin and thus its DNA-binding site. On the basis of these results and considerations, a major biologic role of vimentin may be to protect animals during development and postnatal life against genetic damage and, because of its contribution to the plasticity of the genome, to allow them to respond to environmental challenges.  相似文献   

19.
20.
Summary Monoclonal antibodies were isolated from mice immunized with chicken gizzard desmin. Antibodies reacting with desmin on immunoblots and selectively decorating chicken and rat intestinal smooth muscle as well as the Z-line in striated muscle, were selected for this study. Based on their staining pattern on cryostat sections of chicken and rat cerebellum, spleen, kidney, aorta and femoral artery, monoclonal supernatants could be divided in three groups: (i) antibodies decorating astrocytes and vascular smooth muscle; (ii) antibodies decorating only vascular smooth muscle; (iii) antibodies decorating only astrocytes. Antibodies in group (i) and (iii) also stained GFA-negative Bergmann glia in chicken cerebellum. It is proposed that desmin may vary depending on the histological localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号