首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A new chain mutant Hb-Sinai 47 His is described. The aminoacid composition of all tryptic peptides has been determined, with the exception of the insoluble core. In the fingerprint peptide T 6 which normally migrates between T 3 and T 1, moves now between T 3 and T 7. The aminoacid composition of peptide T 6 indicates a change in the aminoacid composition from Asp- to His+ in position 47.This work was supported by Grant No. GM 13714 U.S.P.H.S.  相似文献   

2.
Chloride-transporting membrane proteins of the CLC family appear in two distinct mechanistic flavors: H+-gated Cl channels and Cl/H+ antiporters. Transmembrane H+ movement is an essential feature of both types of CLC. X-ray crystal structures of CLC antiporters show the Cl ion pathway through these proteins, but the H+ pathway is known only inferentially by two conserved glutamate residues that act as way-stations for H+ in its path through the protein. The extracellular-facing H+ transfer glutamate becomes directly exposed to aqueous solution during the transport cycle, but the intracellular glutamate E203, Gluin, is buried within the protein. Two regions, denoted “polar” and “interfacial,” at the intracellular surface of the bacterial antiporter CLC-ec1 are examined here as possible pathways by which intracellular aqueous protons gain access to Gluin. Mutations at multiple residues of the polar region have little effect on antiport rates. In contrast, mutation of E202, a conserved glutamate at the protein–water boundary of the interfacial region, leads to severe slowing of the Cl/H+ antiport rate. An X-ray crystal structure of E202Y, the most strongly inhibited of these substitutions, shows an aqueous portal leading to Gluin physically blocked by cross-subunit interactions; moreover, this mutation has only minimal effect on a monomeric CLC variant, which necessarily lacks such interactions. The several lines of experiments presented argue that E202 acts as a water-organizer that creates a proton conduit connecting intracellular solvent with Gluin.  相似文献   

3.
Two of the defining hallmarks of Alzheimer’s disease (AD) are deposits of the β-amyloid peptide, Aβ, and the generation of reactive oxygen species, both of which may be due to the Aβ peptide coordinating metal ions. The Cu2+ concentrations in cores of senile plaques are significantly elevated in AD patients. Experimental results indicate that Aβ1–42 in particular has a very high affinity for Cu2+, and that His13 and His14 are the two most firmly established ligands in the coordination sphere of the copper ion. Quantum chemical calculations using the unrestricted B3LYP hybrid density functional method with the 6–31G(d) basis set were performed for geometries, zero point energies and thermochemistry. The effects of solvation were accommodated using the CPCM method. The enthalpies were calculated with the 6–311+G(2df,2p) basis set. Calculations show that when Cu(H2O)42+ combines with the model compound 1 (3-(1H-imidazol-5-yl)-N-[2-(1H-imidazol-5-yl)ethyl] propanamide) in the aqueous phase, the most stable binding site involves the Nπ atoms of His13 and His14 as well as the carbonyl of the intervening backbone amide group. These structures are fairly rigid and the implications for conformational changes to the Aβ backbone are discussed. In solution at pH=7, Cu2+ promotes the deprotonation and involvement in the binding of the backbone amide nitrogen in a β-sheet like structure. This geometry does not induce strain in the peptide backbone, making it the most likely representation of that portion of the Cu2+–Aβ complex monomer in aqueous solution.  相似文献   

4.
Proton (H+) conductive pathways are suggested to play roles in the regulation of intracellular pH. We characterized temperature-sensitive whole cell currents in mouse bone marrow–derived mast cells (BMMC), immature proliferating mast cells generated by in vitro culture. Heating from 24 to 36°C reversibly and repeatedly activated a voltage-dependent outward conductance with Q10 of 9.9 ± 3.1 (mean ± SD) (n = 6). Either a decrease in intracellular pH or an increase in extracellular pH enhanced the amplitude and shifted the activation voltage to more negative potentials. With acidic intracellular solutions (pH 5.5), the outward current was detected in some cells at 24°C and Q10 was 6.0 ± 2.6 (n = 9). The reversal potential was unaffected by changes in concentrations of major ionic constituents (K+, Cl, and Na+), but depended on the pH gradient, suggesting that H+ (equivalents) is a major ion species carrying the current. The H+ current was featured by slow activation kinetics upon membrane depolarization, and the activation time course was accelerated by increases in depolarization, elevating temperature and extracellular alkalization. The current was recorded even when ATP was removed from the intracellular solution, but the mean amplitude was smaller than that in the presence of ATP. The H+ current was reversibly inhibited by Zn2+ but not by bafilomycin A1, an inhibitor for a vacuolar type H+-ATPase. Macroscopic measurements of pH using a fluorescent dye (BCECF) revealed that a rapid recovery of intracellular pH from acid-load was attenuated by lowering temperature, addition of Zn2+, and depletion of extracellular K+, but not by bafilomycin A1. These results suggest that the H+ conductive pathway contributes to intracellular pH homeostasis of BMMC and that the high activation energy may be involved in enhancement of the H+ conductance.  相似文献   

5.
6.
The chlorambucil l-histidine conjugate was synthesized and radiolabeled with [99mTc(CO)3]+ core to form the 99mTc(CO)3(His–CB) complex. The radiochemical purity of the complex was over 90%. It had good hydrophilicity and was stable at room temperature. The high initial tumor uptake with certain retention, fast clearance from background, good tumor/non-tumor ratios and satisfactory scintigraphic images highlighted the potential of 99mTc(CO)3(His–CB) as a tumor imaging agent.  相似文献   

7.
From phylogenetic sequence analysis, it can be concluded that the proton-pumping NADH:ubiquinone oxidoreductase (complex I) has evolved from preexisting modules for electron transfer and proton translocation. It is built up by a peripheral NADH dehydrogenase module, an amphipatic hydrogenase module, and a membrane-bound transporter module. These modules, or at least part of them, are also present in various other bacterial enzymes. It is assumed that they fulfill a similar function in complex I and related enzymes. Based on the function of the individual modules, it is possible to speculate about the mechanism of complex I. The hydrogenase module might work as a redox-driven proton pump, while the transporter module might act as a conformation-driven proton pump. This implies that complex I contains two energy-coupling sites. The NADH dehydrogenase module seems to be involved in electron transfer and not in proton translocation.  相似文献   

8.
9.
Several studies have analysed aromatic interactions, involving mostly phenylalanine, tyrosine and tryptophan. Only a few studies have considered histidine as an interacting aromatic residue. An extensive analysis of aromatic His–X interactions is performed here on a data set of 593 PDB structures: 68% of the histidine are involved in aromatic pairs and 1271 non-redundant His–X pairs were analysed. Thirty percent of these pairs involve an aromatic partner less than 6 apart in the sequence. These near-sequence pairs correspond to conformations which stabilise secondary structures, mainly α-helices when the residues are 4 apart and β-strands when they are 2 apart in the sequence. The partners of the other His–X pairs (887, 70%) are more than 5 apart in the sequence. Of these far-sequence pairs, 35% bridge beta strands and only 9% helices. The near-sequence pairs are sterically constrained as supported by conformer distribution. The X partners of far-sequence His–X pairs are mainly “above” the histidine ring with tilted and normal rings, corresponding to a “T shape; face to edge” orientation. Phenylalanine, the only aromatic residue with no heteroatom, is a disfavoured partner, whereas histidine is the preferred one. Heteroatom–heteroatom interactions are favoured in near-sequence as well as in far-sequence His–His, His–Trp and His–Tyr pairs.  相似文献   

10.
We extend recent modeling studies of proton hopping, used to describe the functioning of membrane channels and axon nerve conduction, to offer an explanation of the initiation of the nerve impulse at an effector? ligand encounter. This encounter is proposed to create a hydronium ion in the vicinity of the effector and ligand, which leads to a continuous flow of protons, called proton hopping, through water adjacent to this encounter. This proton hopping is proposed to be the message carried from the encounter to the axon of a particular nerve system associated with that particular effector? ligand system.  相似文献   

11.
The net uptake of 3-O-methylglucose into leaf segments obtained from Senecio mikanioides Otto, and net proton efflux from the segments, were both promoted when the osmotic potential of the medium was decreased by addition of mannitol, sorbitol, or polyethylene glycol (optimal osmolarity, 0.3 Osmolar for mannitol and sorbitol). The effect was not due to promotion of `aging', since the antibiotic cerulenin suppressed aging without reducing the size of the mannitol stimulation; further, mannitol did not accelerate aging. Neither was the effect ascribable to diminished efflux (i.e. reduced `leak' because: first, visualization of the unidirectional sugar fluxes by double labeling indicated that the effect of added osmoticum was to promote influx rather than to reduce efflux; second, compartment analysis did not suggest any effect of mannitol on the rate constants for efflux from either the slowly equilibrating or more rapidly equilibrating compartment. The effect was not specific to poly-ols since it was also obtained with betaine and choline chloride. Since methyl glucose is not taken up into the phloem it could not be ascribed to a turgor effect on phloem loading. We conclude that the effect may reflect osmoregulation. As the sugar flux is probably driven by protonmotive force, it is likely that the effects on proton flux and on sugar flux are related. We suggest that the plasmalemma-sited proton pump is sensitive to the hydrostatic pressure gradient across the plasmalemma-cell wall complex, and functions both as detector and as effector in osmoregulation.  相似文献   

12.
A contributing factor to the pathology of Alzheimer's disease is the generation of reactive oxygen species, most probably a consequence of the beta-amyloid (Abeta) peptide coordinating copper ions. Experimental and theoretical results indicate that His13 and His14 are the two most firmly established ligands in the coordination sphere of Cu(II) bound to Abeta. Abeta1-42 is known to reduce Cu(II) to Cu(I). The Abeta-Cu(II) complex has been shown to catalytically generate H(2)O(2) from reducing agents and O(2). Cu(II) in the presence of Abeta has been reported to have a formal reduction potential of +0.72-0.77 V (vs. the standard hydrogen electrode). Quantum chemical calculations using the B3LYP hybrid density functional method with the 6-31G(d) basis set were performed to model the reduction of previously studied Cu(II) complexes representing the His13-His14 portion of Abeta (Raffa et al. in J. Biol. Inorg. Chem. 10:887-902, 2005). The effects of solvation were accommodated using the CPCM method. The most stable complex between Cu(I) and the model compound, 3-(5-imidazolyl)propionylhistamine (1) involves tricoordinated Cu(I) in a distorted-T geometry, with the Npi of both imidazoles as well as the oxygen of the backbone carbonyl bound to copper. This model would be the most likely representation of a Cu(I) binding site for a His-His peptide in aqueous solution. A variety of possible redox processes are discussed.  相似文献   

13.
14.
The switching propensity and maximum probability of occurrence of the side chain imidazole group in the dipeptide cyclo(His–Pro) (CHP) were studied by applying molecular dynamics simulations and density functional theory. The atomistic behaviour of CHP with the neurotoxins glutamate (E) and paraquat (Pq) were also explored; E and Pq engage in hydrogen bond formation with the diketopiperazine (DKP) ring of the dipeptide, with which E shows a profound interaction, as confirmed further by NH and CO stretching vibrational frequencies. The effect of CHP was found to be greater on E than on Pq neurotoxin. A ring puckering study indicated a twist boat conformation for the six-membered DKP ring. Molecular electrostatic potential (MESP) mapping was also used to explore the hydrogen bond interactions prevailing between the neurotoxins and the DKP ring. The results of this study reveal that the DKP ring of the dipeptide CHP can be expected to play a significant role in reducing effects such as oxidative stress and cell death caused by neurotoxins.  相似文献   

15.
This paper uses a reaction–diffusion approach to examine the dynamics in the spread of a Wolbachia infection within a population of mosquitoes in a homogeneous environment. The formulated model builds upon an earlier model by Skalski and Gilliam (Am. Nat. 161(3):441–458, 2003), which incorporates a slow and fast dispersal mode. This generates a faster wavespeed than previous reaction–diffusion approaches, which have been found to produce wavespeeds that are unrealistically slow when compared with direct observations. In addition, the model incorporates cytoplasmic incompatibility between male and female mosquitoes, which creates a strong Allee effect in the dynamics. In previous studies, linearised wavespeeds have been found to be inaccurate when a strong Allee effect is underpinning the dynamics. We provide a means to approximate the wavespeed generated by the model and show that it is in close agreement with numerical simulations. Wavespeeds are approximated for both Aedes aegypti and Drosophila simulans mosquitoes at different temperatures. These wavespeeds indicate that as the temperature decreases within the optimal temperature range for mosquito survival, the speed of a Wolbachia invasion increases for Aedes aegypti populations and decreases for Drosophila simulans populations.  相似文献   

16.
The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen that secretes a multitude of virulence factors during the course of infection. Among these is Cif, an epoxide hydrolase (EH) that reduces the functional localization of the cystic fibrosis transmembrane conductance regulator in epithelial cells. In addition to being the first reported EH virulence factor, Cif possesses unique sequence deviations from canonical EH motifs. Foremost among these is the substitution of a histidine for the first epoxide ring-opening tyrosine in the active site. To test the functional equivalence of Tyr and His side chains at this position, we have generated the mutant Cif-H177Y. Structural analysis confirms that both the WT His and mutant Tyr side chains can be accommodated without large-scale conformational changes. However, the Tyr mutant is functionally inactive. Based on a detailed analysis of the structure of the Tyr mutant, it appears that Cif's main-chain conformation imposes a functional requirement for a His at this position. Comparison with canonical EH structures reveals additional conformational differences, which are coupled to divergent sequence characteristics. When used to probe the genomes of other opportunistic pathogens, these sequence-structure criteria uncover candidate sequences that appear to form a distinct subfamily of Cif-like epoxide hydrolases characterized by a conserved His/Tyr ring-opening pair.  相似文献   

17.
Cysteine protease is ubiquitous in nature. Excess activity of this enzyme causes intercellular proteolysis, muscle tissue degradation, etc. The role of water-mediated interactions in the stabilization of catalytically significant Asp158 and His159 was investigated by performing molecular dynamics simulation studies of 16 three-dimensional structures of plant thiol proteases. In the simulated structures, the hydrophilic W(1), W(2) and WD(1) centers form hydrogen bonds with the OD1 atom of Asp158 and the ND1 atom of His159. In the solvated structures, another water molecule, W(E), forms a hydrogen bond with the NE2 atom of His159. In the absence of the water molecule W(E), Trp177 (NE1) and Gln19 (NE2) directly interact with the NE2 atom of His159. All these hydrophilic centers (the locations of W(1), W(2), WD(1), and W(E)) are conserved, and they play a critical role in the stabilization of His-Asp complexes. In the water dynamics of solvated structures, the water molecules W(1) and W(2) form a water...water hydrogen-bonded network with a few other water molecules. A few dynamical conformations or transition states involving direct (His159 ND1...Asp158 OD1) and water-mediated (His159 ND1...W(2)...Asp158 OD1) hydrogen-bonded complexes are envisaged from these studies.  相似文献   

18.

Background

How do we bond to one another? While in some species, like humans, physical contact plays a role in the process of attachment, it has been suggested that tactile contact''s value may greatly differ according to the species considered. Nevertheless, grooming is often considered as a pleasurable experience for domestic animals, even though scientific data is lacking. On another hand, food seems to be involved in the creation of most relationships in a variety of species.

Methodology/Principal Findings

In this study, we used the horse training context to test the effects of food versus grooming during repeated human-horse interactions. The results reveal that food certainly holds a key role in the attachment process, while tactile contact was here clearly insufficient for bonding to occur.

Conclusion/Significance

This study raises important questions on the way tactile contact is perceived, and shows that large inter-species differences are to be expected.  相似文献   

19.
20.
Herein, we report the first experimental demonstration of surface plasmon enhancement at a liquid–metal–liquid interface using a pseudo-Kretschmann geometry. Pumping gold nanoparticle clusters at the interface of a p-xylene–water mixture, we were able to measure a fluorescence enhancement of three orders of magnitude in Rose Bengal at an excitation wavelength of 532 nm. The observed increase is due to the local electric field enhancement and the reduction of the fluorescence lifetime of dye molecules in the close vicinity of the metal surface. Theoretical modeling using the T-matrix method of the electric field intensity enhancement of emulated surfaces supports the experimental results. This new approach will open a new road for the study of dynamic systems using plasmonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号