首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Download : Download high-res image (156KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
Protein knots, mostly regarded as intriguing oddities, are gradually being recognized as significant structural motifs. Seven distinctly knotted folds have already been identified. It is by and large unclear how these exceptional structures actually fold, and only recently, experiments and simulations have begun to shed some light on this issue. In checking the new protein structures submitted to the Protein Data Bank, we encountered the most complex and the smallest knots to date: A recently uncovered α-haloacid dehalogenase structure contains a knot with six crossings, a so-called Stevedore knot, in a projection onto a plane. The smallest protein knot is present in an as yet unclassified protein fragment that consists of only 92 amino acids. The topological complexity of the Stevedore knot presents a puzzle as to how it could possibly fold. To unravel this enigma, we performed folding simulations with a structure-based coarse-grained model and uncovered a possible mechanism by which the knot forms in a single loop flip.  相似文献   

4.
Entanglement and knots occur across all aspects of the physical world. Despite the common belief that knots are too complicated for incorporation into proteins, knots have been identified in the native fold of a growing number of proteins. The discovery of proteins with this unique backbone characteristic has challenged the preconceptions about the complexity of biological structures, as well as current folding theories. Given the intricacies of the knotted geometry, the interplay between a protein’s fold, structure, and function is of particular interest. Interestingly, for most of these proteins, the knotted region appears critical both in folding and function, although full understanding of these contributions is still incomplete. Here, we experimentally reveal the impact of the knot on the landscape, the origin of the bistable nature of the knotted protein, and broaden the view of knot formation as uniquely decoupled from folding.  相似文献   

5.
The temperate bacteriophage BK5-T was isolated from Streptococcus cremoris BK5 by induction with mitomycin C. Electron microscopy revealed that BK5-T DNA consists of linear molecules, ranging in size from 39.7 to 46 kilobase pairs. Restriction analysis of self-ligated BK5-T DNA showed that the ends of the DNA were not cohesive. The EcoRI restriction fragments of the phage genome were cloned into pACYC184. Restriction enzyme analysis of both the phage DNA and the cloned EcoRI fragments with EcoRI, BstEII, PstI, ClaI, and XbaI yielded a 37.6-kilobase-pair-long circular restriction map for the phage genome. It was concluded that the BK5-T DNA molecules in the population differ in their sequence by a circular permutation and that individual DNA molecules are terminally redundant. The map location of the sites at which packaging of BK5-T DNA into phage heads is initiated (pac) and at which the phage integrates into the bacterial chromosome (att) were established.  相似文献   

6.
随着蛋白质结构计划的顺利开展,各种各样的蛋白质结构将被科学家破译。“结”结构就是最近被发现的一种蛋白质新结构。本文主要论述了在产甲烷杆菌(Methanobacterium thermoautotrophicum)中含有“结”结构的MTl蛋白质的结构研究新成果。  相似文献   

7.
Cyclotides are a large family of mini-proteins that have the distinguishing features of a head-to-tail cyclised backbone and a cystine knot formed by six conserved cysteine residues. They are present in plants from the Rubiaceae, Violaceae and Cucurbitaceae families. The unique structural features of the cyclotides make them extremely resistant to chemical, thermal and proteolytic degradation. In this article we review recent studies from our laboratory that dissect the role of the individual structural elements in defining the stability of cyclotides. The resistance of cyclotides to chemical and proteolytic degradation is in large part due to the cystine knot, whereas the thermal stability is a composite of several features including the cystine knot, the cyclic backbone and the hydrogen bonding network. A range of biological activities of cyclotides is critically dependent on the presence of the cyclic backbone.Australian Peptide Conference Issue.  相似文献   

8.
Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants' temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer. The crystal structures of one truncated variant (cp283Δ7) in the apo-form determined at 1.49 Å resolution and with a bound phosphonate inhibitor at 1.69 Å resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.  相似文献   

9.
Multiple types of natural collagens specifically assemble and co-exist in the extracellular matrix. Although noncollagenous trimerization domains facilitate the folding of triple-helical regions, it is intriguing to ask whether collagen sequences are also capable of controlling heterospecific association. In this study, we designed a model system mimicking simultaneous specific assembly of two collagen heterotrimers using a genetically inspired operation, circular permutation. Previously, surface charge-pair interactions were optimized on three collagen peptides to promote the formation of an abc-type heterotrimer. Circular permutation of these sequences retained networks of stabilizing interactions, preserving both triple-helical structure and heterospecificity of assembly. Combining original peptides A, B, and C and permuted peptides D, E, and F resulted primarily in formation of A:B:C and D:E:F, a heterospecificity of 2 of 56 possible stoichiometries. This degree of specificity in collagen molecular recognition is unprecedented in natural or synthetic collagens. Analysis of natural collagen sequences indicates low similarity between the neighboring exons. Combining the synthetic collagen model and bioinformatic analysis provides insight on how fibrillar collagens might have arisen from the duplication of smaller domains.  相似文献   

10.
11.
The structure of the putative feline immunodeficiency virus (FIV) ribosomal frameshifting pseudoknot (PK) has been investigated by a mass spectrometric three-dimensional (MS3D) approach, which involves the application of established solvent-accessibility probes and chemical crosslinkers with detection by electrospray ionization (ESI) Fourier transform mass spectrometry (FTMS). Regardless of their size, probed substrates can be treated with ribonucleases and analyzed by ESI-FTMS to obtain the correct position of chemically modified nucleotides. Protection maps and distance information can be utilized to generate 3D models using the constraint satisfaction algorithm provided by MC-SYM and the energy minimization modules included in CNS. Control experiments were performed on a mutant of mouse mammary tumor virus pseudoknot (VPK), for which an NMR structure is available. Comparison between the MS3D model and the high-resolution structure provided a approximately 3A root-mean-square deviation calculated from all the atoms present in double-stranded regions. Applied to FIV-PK, the MS3D approach confirmed that the selected sequence could fold into an actual pseudoknot, supporting the sequence alignment predictions. Characteristic features of H-type pseudoknots were recognized immediately, but a putative A13-U30 pair was not observed at the stem junction, making FIV-PK resemble VPK more closely than the initially suggested simian retrovirus type-1 pseudoknot. In our model, the unpaired U30 protrudes into the medium, while the hinging A13 assumes a stacked conformation that enables the stems to form a approximately 60 degrees bend and relieve the strain caused by a short loop 1. The model provided the basis to explain the different alkylation patterns observed in the absence and presence of Mg(2+), suggesting the possible formation of a specific metal-binding site between loop 1 and stem 2. This instance illustrates how the MS3D model of FIV-PK can be utilized effectively to generate hypotheses and support functional observations in the absence of a high-resolution structure.  相似文献   

12.
The microbial deconstruction of the plant cell wall is a critical biological process, which also provides important substrates for environmentally sustainable industries. Enzymes that hydrolyze the plant cell wall generally contain non-catalytic carbohydrate binding modules (CBMs) that contribute to plant cell wall degradation. Here we report the biochemical properties and crystal structure of a family of CBMs (CBM60) that are located in xylanases. Uniquely, the proteins display broad ligand specificity, targeting xylans, galactans, and cellulose. Some of the CBM60s display enhanced affinity for their ligands through avidity effects mediated by protein dimerization. The crystal structure of vCBM60, displays a β-sandwich with the ligand binding site comprising a broad cleft formed by the loops connecting the two β-sheets. Ligand recognition at site 1 is, exclusively, through hydrophobic interactions, whereas binding at site 2 is conferred by polar interactions between a protein-bound calcium and the O2 and O3 of the sugar. The observation, that ligand recognition at site 2 requires only a β-linked sugar that contains equatorial hydroxyls at C2 and C3, explains the broad ligand specificity displayed by vCBM60. The ligand-binding apparatus of vCBM60 displays remarkable structural conservation with a family 36 CBM (CBM36); however, the residues that contribute to carbohydrate recognition are derived from different regions of the two proteins. Three-dimensional structure-based sequence alignments reveal that CBM36 and CBM60 are related by circular permutation. The biological and evolutionary significance of the mechanism of ligand recognition displayed by family 60 CBMs is discussed.  相似文献   

13.
14.

Background

Subunit number is amongst the most important structural parameters that determine size, symmetry and geometry of a circular protein oligomer. The L-tryptophan biosynthesis regulator, TRAP, present in several Bacilli, is a good model system for investigating determinants of the oligomeric state. A short segment of C-terminal residues defines whether TRAP forms an 11-mer or 12-mer assembly. To understand which oligomeric state is more stable, we examine the stability of several wild type and mutant TRAP proteins.

Methodology/Principal Findings

Among the wild type B. stearothermophilus, B. halodurans and B. subtilis TRAP, we find that the former is the most stable whilst the latter is the least. Thermal stability of all TRAP is shown to increase with L-tryptophan concentration. We also find that mutant TRAP molecules that are truncated at the C-terminus - and hence induced to form 12-mers, distinct from their 11-mer wild type counterparts - have increased melting temperatures. We show that the same effect can be achieved by a point mutation S72N at a subunit interface, which leads to exclusion of C-terminal residues from the interface. Our findings are supported by dye-based scanning fluorimetry, CD spectroscopy, and by crystal structure and mass spectrometry analysis of the B. subtilis S72N TRAP.

Conclusions/Significance

We conclude that the oligomeric state of a circular protein can be changed by introducing a point mutation at a subunit interface. Exclusion (or deletion) of the C-terminus from the subunit interface has a major impact on properties of TRAP oligomers, making them more stable, and we argue that the cause of these changes is the altered oligomeric state. The more stable TRAP oligomers could be used in potential applications of TRAP in bionanotechnology.  相似文献   

15.
Russian Journal of Bioorganic Chemistry - Two variants of circularly permuted BrUSLEE, a green fluorescent protein with a short fluorescence lifetime, have been engineered. We characterized the...  相似文献   

16.
The development of thylakoid stacking, accumulation of the light-harvesting chlorophyll a/b protein complex (LHCP), and the changes of circular dichroism (CD) which reflect the organization of chlorophyll molecules in greening thylakoids of bean Phaseolus vulgaris cv Red Kidney leaves were investigated.

Chloroplasts formed under intermittent light contained large double sheets of membrane with extensive appression in addition to separate lamellae. Thylakoids of such chloroplasts were devoid of LHCP and exhibited a relatively small CD in the chlorophyll absorption region. Upon continuous illumination, the rearrangement of membranes to characteristic grana and the accumulation of the LHCP was accompanied by the gradual appearance of the very intense CD signal with peaks at 682 to 684 (+) and 665 to 672 nanometers (−). The magnitude of differential absorption was approximately 100 times larger than that of the chlorophyll a in solution. This suggests a superhelical liquid crystal-like organization for LHCP, a texture which can be altered by changes of the electric field in the photosynthetic membranes.

  相似文献   

17.
18.
This article describes the development and creation of the Protein Circular Dichroism Data Bank (PCDDB), a deposition and searchable data bank for validated circular dichroism spectra located at http://pcddb.cryst.bbk.ac.uk/.  相似文献   

19.
A bacteriocin produced by Pseudomonas syringae pv. ciccaronei, used at different purification levels and concentrations in culture and in planta, inhibited the multiplication of P. syringae subsp. savastanoi, the causal agent of olive knot disease, and affected the epiphytic survival of the pathogen on the leaves and twigs of treated olive plants. Treatments with bacteriocin from P. syringae pv. ciccaronei inhibited the formation of overgrowths on olive plants caused by P. syringae subsp. savastanoi strains PVBa229 and PVBa304 inoculated on V-shaped slits and on leaf scars at concentrations of 105 and 108 CFU ml−1, respectively. In particular, the application of 6,000 arbitrary units (AU) of crude bacteriocin (dialyzed ammonium sulfate precipitate of culture supernatant) ml−1 at the inoculated V-shaped slits and leaf scars resulted in the formation of knots with weight values reduced by 81 and 51%, respectively, compared to the control, depending on the strains and inoculation method used. Crude bacteriocin (6,000 AU ml−1) was also effective in controlling the multiplication of epiphytic populations of the pathogen. In particular, the bacterial populations recovered after 30 days were at least 350 and 20 times lower than the control populations on twigs and on leaves, respectively. These results suggest that bacteriocin from P. syringae pv. ciccaronei can be used effectively to control the survival of the causal agent of olive knot disease and to prevent its multiplication at inoculation sites.  相似文献   

20.
The conformation and the orientation of the protein secondary structures in purple membrane was analyzed by infrared absorption and linear dichroism of oriented membranes as well as by UV circular dichroism of bacteriorhodopsin in intact purple membrane and in lipid vesicles. A large amount (74 ± 5%) of transmembrane α-helices is detected with no significant contribution of β-sheet strands running perpendicular to the membrane plane. Thus, these data do not support the recent structural model proposed by Jap et al. (Biophys. J. 1983, 43:81-89).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号