首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancer cells do not exist as pure homogeneous populations in vivo. Instead they are embedded in "cancer cell nests" that are surrounded by stromal cells, especially cancer associated fibroblasts. Thus, it is not unreasonable to suspect that stromal fibroblasts could influence the metabolism of adjacent cancer cells, and visa versa. In accordance with this idea, we have recently proposed that the Warburg effect in cancer cells may be due to culturing cancer cells by themselves, out of their normal stromal context or tumor microenvironment. In fact, when cancer cells are co-cultured with fibroblasts, then cancer cells increase their mitochondrial mass, while fibroblasts lose their mitochondria. An in depth analysis of this phenomenon reveals that aggressive cancer cells are "parasites" that use oxidative stress as a "weapon" to extract nutrients from surrounding stromal cells. Oxidative stress in fibroblasts induces the autophagic destruction of mitochondria, by mitophagy. Then, stromal cells are forced to undergo aerobic glycolysis, and produce energy-rich nutrients (such as lactate and ketones) to "feed" cancer cells. This mechanism would allow cancer cells to seed anywhere, without blood vessels as a food source, as they could simply induce oxidative stress wherever they go, explaining how cancer cells survive during metastasis. We suggest that stromal catabolism, via autophagy and mitophagy, fuels the anabolic growth of tumor cells, promoting tumor progression and metastasis. We have previously termed this new paradigm "The Autophagic Tumor Stroma Model of Cancer Metabolism", or the "Reverse Warburg Effect". We also discuss how glutamine addiction (glutaminolysis) in cancer cells fits well with this new model, by promoting oxidative mitochondrial metabolism in aggressive cancer cells.  相似文献   

2.
Microglia-like cells and endothelial cells may influence capillary blood output. 1) Microglia-like cells are sometimes interposed between two endothelial processes with which they are nexus-linked. In this position, they protude in vascular lumen which is considerably reduced. 2) Endothelial cells present no contractile filaments but their nucleus and surrounding cytoplasm may protude in vascular lumen, constituting a "coussinet-like" structure. Thus, regulation by specialized structures observed by Legait in brain arteries seems to occur even in the smallest ramifications of brain cortical vessels.  相似文献   

3.
Smooth muscle cells from the aortic media of adult pigs and monkeys have been grown in primary culture by plating cells enzymatically dissociated from the intact aorta. During the first 6 d these cells are in the "contractile" phenotype. That is, they contract slowly in response to angiotensin II and their cytoplasm is filled with both thick and thin myofilaments. In this state they do not incorporate [3H]thymidine into DNA or proliferate in response to normolipemic or hyperlipemic whole blood serum (WBS). After 7 d in culture the cells undergo a spontaneous modulation of phenotype to a "synthetic" state where they cannot be stimulated to contract and their cytoplasm is filled with organelles usually associated with synthesis of secretory protein. Thick myosin-containing filaments can no longer be demonstrated. When challenged with normolipemic or hyperlipemic WBS the cells incorporate [3H]thymidine into DNA and undergo logarithmic growth. It is suggested that when smooth muscle is the contractile phenotype (as normally exists for most cells in the aortic media of adult animals) it does not divide when challenged with serum mitogens but can undergo a change of phenotype to a synthetic state in which division can be stimulated.  相似文献   

4.
Regulatory T cells and tumor immunity   总被引:9,自引:0,他引:9  
Central deletion of self-reactive T cells has been the textbook paradigm for inducing self-tolerance in the periphery and the concept of a role of T cell-mediated suppression in this process has long been controversial. A decisive shift in the opinion on suppressor T cells has lately occurred with the observations of Sakaguchis group that linked a class of CD4+CD25+ T cells to the prevention of autoimmunity from neonatal thymectomy in mice. These CD4+CD25+ T cells have been named T regulatory (Treg) cells. They are believed to be selected in the thymus as an anti-self repertoire. Hence they were referred to as natural T regulatory (nTreg) cells. Presently, in addition to their role in autoimmunity, they are believed to exert regulatory function in infection, in transplantation immunity as well as in tumor immunity. In contrast to these nTreg cells, another class of CD4+ Treg cells also exercises regulatory function in the periphery. These Treg cells are also CD4+ T cells and after activation they also become phenotypically CD4+CD25+. They are, however induced in the periphery as Treg cells. Hence, they are termed as induced Treg (iTreg) cells. There are major differences in the biology of these two types of Treg cells. They differ in their requirements for activation and in their mode of action. Nonetheless, evidence indicates that both nTreg cells and iTreg cells are involved in the control of tumor immunity. The question of how to circumvent their regulatory constraints, therefore, has become a major challenge for tumor immunologists.  相似文献   

5.
进化细胞生物学的提出及其任务   总被引:1,自引:1,他引:0  
李靖炎 《动物学研究》1989,10(4):319-326
作者提出应创建一门源于进化生物学与细胞生物学两者的交叉学科一进化细胞生物学(细胞的进化生物学)。其根本任务在于用进化的观点考察真核细胞的一切方面,从它们的起源和演化来认识它们的现在。文中列举了其具体的研究内容,并分析了其研究方法上的特点,指出在这里需要把进化生物学的综合性分析与细胞生物学的实验研究最紧密地结合起来。文中还论述了真核细胞的细胞器的“不进化”现象,指出其根本原因在于进化焦点的转移。  相似文献   

6.
By virtue of their multifunctional nature, proteoglycans (PGs) are thought to govern the process of cell movement in numerous physiological and pathological contexts, spanning from early embryonic development to tumour invasion and metastasis. The precise mode by which they influence this process is still fragmentary, but evidence is accruing that they may affect it in a multifaceted manner. PGs bound to the plasma membrane mediate the polyvalent interaction of the cell with matrix constituents and with molecules of the neighbouring cells' surfaces; they modulate the activity of receptors implicated in the recognition of these components; and they participate in the perception and convergence of growth- and motility-promoting cues contributed by soluble factors. Through some of these interactions several PGs transduce to pro-motile cells crucial intracellular signals that are likely to be essential for their mobility. A regulated shedding of certain membrane-intercalated PGs seems to provide an additional level of control of cell movement. Coincidentally, matrix-associated PGs may govern cell migration by structuring permissive and non-permissive migratory paths and, when directly secreted by the moving cells, may alternatively create favourable or hostile microenvironments. To exert this latter, indirect effect on cell movement, matrix PGs strongly rely upon their primary molecular partners, such as hyaluronan, link proteins, tenascins, collagens and low-affinity cell surface receptors, whereas a further finer control is provided by a highly regulated proteolytic processing of the PGs accounted by both the migrating cells themselves and cells of their surrounding tissues. Overall, PGs seem to play an important role in determining the migratory phenotype of a cell by initiating, directing and terminating cell movement in a spatio-temporally controlled fashion. This implies that the "anti-adhesive and/or "anti-migratory" properties that have previously been assigned to certain PGs may be re-interpreted as being a means by which these macromolecules elaborate haptotaxis-like mechanisms imposing directionality upon the moving cells. Since these conditions would allow cells to be led to given tissue locations and become immobilized at these sites, a primary function may be ascribed to PGs in the dictation of a "stop or go" choice of the migrating cells.  相似文献   

7.
The segregation of DNA in epithelial stem cells   总被引:1,自引:0,他引:1  
It has recently been suggested that stem cells may invariably keep, from one division to the next, the daughter DNA molecules that contain the older of the two parental strands—that is, they may retain a complete set of “immortal strands,” through successive cell divisions (Cairns, 1975). We can test this hypothesis by labeling either the old immortal strands at the time the stem cells are created or the newly synthesized strands during subsequent divisions of the stem cells. In the former case, the stem cells should become permanently labeled; in the latter case, they should eliminate their label on their second division.Experiments of this sort have been conducted with the tongue papilla under steady state conditions and with the regenerating small intestinal crypts. The results clearly show that by far most of the multiplying cells in tongue and intestinal epithelium segregate their DNA “randomly” at mitosis. Nevertheless, the results, though far from conclusive, suggest that there are a small number of cells (1–5 in the stem cell region of each crypt and one at the base of each column of cells in the tongue) that selectively segregate their old and new DNA strands in the expected way. Thus in the immortal strand labeling experiments, there are a few labeled cells that retain their label for up to 4 weeks; conversely, in the new strand labeling experiments, a few cells appear to rid themselves of label after intervals equivalent to approximately two cell cycles.  相似文献   

8.
Many regions of the adult central nervous system contain cycling cells. Such cells comprise a relatively small fraction of the total population of the CNS. Work over decades has attempted to determine the normal fates of these cells and their fates under pathological conditions. The recent interest in "stem" cells and "progenitors" in the adult CNS has sparked a much revived exploration into the nature of these cells and in the signals by which they may be induced to differentiate into mature neurons or glia. This population has not yet been fully characterized, although it has become clear that this is a heterogeneous group of cells, differing in morphology, antigen expression, migratory capacity, and potential fates.  相似文献   

9.
We have characterized the thymocytes that can be induced to secrete interleukin 2 (IL 2) after polyclonal stimulation with Con A. For maximal activation, an important adjunct to the Con A is the phorbol ester TPA. In the presence of TPA, IL 2 production by thymocytes is relatively independent of adherent accessory cells; this allows us to compare the abilities of different thymic subpopulations to make IL 2. The most numerous class that includes IL 2 producers is made up of cells with a typical "medullary" population, the phenotype: moderately small, postmitotic cells that fail to bind peanut agglutinin. In addition, however, a population of large, proliferating lymphoblasts is competent in IL 2 production directly as isolated. Relative to the total "medullary" population, the lymphoblasts are enriched for the ability to make IL 2. They account for a significant proportion of the total IL 2 produced by thymocytes, and demonstrate that this aspect of immunocompetence is not restricted to cells that have finished their intrathymic proliferation. The IL 2-producing lymphoblasts do not bind peanut agglutinin or express thymus-leukemia antigen, but they do express high levels of Lyt-1. Although distinct from most medullary thymocytes, therefore, they are also distinct from the majority of cortical blast cells for which a direct precursor role has been established. They may be a subset of the rare proliferating blast cells in the medulla. Further heterogeneity in the thymic IL 2 producers is demonstrated by their expression of the Lyt-2 glycoprotein. The majority of IL 2 producers are Lyt-2- as are the majority of peripheral T "helper" cells. However, a distinct minority of the thymic IL 2 producers express Lyt-2. Therefore, the ability of some peripheral Lyt-2+ cells to secrete IL 2 may be determined at the time of their initial programming in the thymus.  相似文献   

10.
The comparative electron-microscopic study of early stages of the interaction of Y. pseudotuberculosis virulent strain (No. 282) with "professional" (macrophages) and "nonprofessional" (HeLa cells) phagocytes has been carried out. The character of the intimate mechanism of this interaction has been found to be essentially different. The common feature for both systems is the adsorption of bacteria and their penetration into cells due to phagocytosis. But the subsequent fate of Y. pseudotuberculosis is different. In HeLa cells they are isolated from the cytoplasm by multilayer membrane structures, thus remaining morphologically intact. In macrophages the destruction of the microbe in phagolysosomes occurs.  相似文献   

11.
Monolayer cultures of EAT cells when plated immediately after irradiation show a desrease in survival as they "age" in the plateau phase of growth. This decrease, which is manifest as a diminution of the shoulder width of the survival curve down to values approaching zero, is reversible if the cells are kept in their growth medium for some hours after irradiation before trypsinization and plating. Survival curves obtained by this holding procedure are similar in shape to those shown by exponentially growing or early plateau phase cells. We interpret this effect in terms of repair of potentially lethal damage which occurs after immediate plating in young cultures but only declared during plating in cultures which have "aged" in the plateau phase. The kinetics of this repair and the effects caused by the addition of serum after irradiation in the cultures have been studied.  相似文献   

12.
The synthesis, intracellular transport, storing, and excretion of proteins by duck hypophyseal cells in organ culture were studied with tritiated DL-leucine and high resolution radioautography (pulse-labeling experiments). Quantitative study of the radioautographs allowed a determination of the relative proportions of cytoplasmic radioactivity located in each cellular compartment (ergastoplasm, Golgi apparatus, and protein granules) as well as the variations in these proportions as a function of time. The number of labeled protein granules as opposed to the total number of granules in the cell was also determined (RSg). These data were separately analyzed for the two types of cells present in the explants: prolactin cells and "MSH" cells. The synthetic process follows a course common to both cell types, each of which is distinguished by its particular modalities. The labeled proteins, synthesized within several minutes in the ergastoplasm, are concentrated in the Golgi zone within 30 min. They then migrate out of this area, the emptying of which is accomplished in about 4 hr. These proteins become equally distributed between the protein granules, on the one hand, and the cytoplasm ("sedentary" proteins), on the other. The RSg reaches its maximum when the Golgi zone is emptied, but this figure remains very low (3%). The RSg then decreases slowly (1% in 40 hr). It is concluded that hypophyseal cells are able to store protein in their granules and that their processes of synthesis and excretion are not continuous. The prolactin cells differ from the "MSH" cells in that they have a slower migration of newly synthesized proteins, and these proteins pass via the dilated ergastoplasmic cisterns in which they may possibly be stored.  相似文献   

13.
Effects of cytoplasmic acidification on clathrin lattice morphology   总被引:46,自引:23,他引:23       下载免费PDF全文
Reducing the internal pH of cultured cells by several different protocols that block endocytosis is found to alter the structure of clathrin lattices on the inside of the plasma membrane. Lattices curve inward until they become almost spherical yet remain stubbornly attached to the membrane. Also, the lattices bloom empty "microcages" of clathrin around their edges. Correspondingly, broken-open cells bathed in acidified media demonstrate similar changes in clathrin lattices. Acidification accentuates the normal tendency of lattices to round up in vitro and also stimulates them to nucleate microcage formation from pure solutions of clathrin. On the other hand, several conditions that also inhibit endocytosis have been found to create, instead of unusually curved clathrin lattices with extraneous microcages, a preponderance of unusually flat lattices. These treatments include pH-"clamping" cells at neutrality with nigericin, swelling cells with hypotonic media, and sticking cells to the surface of a culture dish with soluble polylysine. Again, the unusually flat lattices in such cells display a tendency to round up and to nucleate clathrin microcage formation during subsequent in vitro acidification. This indicates that regardless of the initial curvature of clathrin lattices, they all display an ability to grow and increase their curvature in vitro, and this is enhanced by lowering ambient pH. Possibly, clathrin lattice growth and curvature in vivo may also be stimulated by a local drop in pH around clusters of membrane receptors.  相似文献   

14.
We have characterized the cells that form the human oral epithelia by analyzing their patterns of keratin expression in culture and in transplants. Keratinocytes of all oral regions synthesized high levels of keratins K5/K14 and K6/K16,K17, as expressed by cells of all stratified squamous epithelia in culture. However, cells from different regions varied in their expression in culture of retinoid-inducible (K19 and K13) and simple epithelial (K7, K8 and K18) keratins. By these criteria, all oral cells could be classified as belonging to one of three intrinsically distinct subtypes: "keratinizing" (gingiva, hard palate), "typical nonkeratinizing" (inner cheek, floor of mouth, ventral tongue) and "special non-keratinizing" (soft palate), all of which differed from the epidermal keratinocyte subtype. Cells from fetal floor of mouth expressed a pattern of keratins in culture markedly different from that of adult floor of mouth cells but identical to that of the adult "special nonkeratinizing" subtype and similar to that of several oral squamous cell carcinoma lines. When cultures of oral keratinocytes were grafted to the dermis of nude mice, they formed stratified epithelial structures after 10 days. In some areas of the stratified structures, the basal layer recapitulated the K19 expression pattern of the oral region from which they had originated. Thus, regional differentiation of the oral epithelium is based on an intrinsic specialization of regional keratinocyte stem cells. Additionally, oral cell transformation either frequently involves reversion to the fetal keratin program or else oral cells that express this keratin program are especially susceptible to transformation.  相似文献   

15.
Previous publications have described a "volume controlling mechanism" in duck erythrocytes that returns both enlarged and shrunken cells to their original isotonic volume. Enlarged cells return to their original size by readjusting their K content. To study the specificity of this aspect of the mechanism for K, we prepared enlarged cells with various Na and K contents. Only cells containing a high K content resume their original size in the standard isotonic medium. The process of regulation resembles that described above. In contrast, cells containing a high Na content fail to reestablish this volume, but shrink instead until they reach a limiting minimal volume (four-fifths of normal). Here, another mechanism, the cation pump rather than the volume controlling mechanism, removes Na and is responsible for the changes in cell size. Enlarged cells with an intermediate Na and K content utilize both mechanisms to reduce their cation content. Only if Na is prevented from leaving the cell and sufficient K is present initially, will these cells reestablish their original size. These studies demonstrate that the cation pump and volume controlling mechanism function independently and, when cells enlarge, only K can effectively traverse the pathway associated with the volume controlling mechanism. This route differs from the one used by the cation pump to eject Na.  相似文献   

16.
Spleen cells from C57BL/6 mice immunized with murine sarcoma virus (MSV) are capable of producing migration inhibition factor (MIF) in response to stimulation with a specific tumor-associated antigen prepared by solubilization with 3 M KCL. We have previously demonstrated that this response is T cell-dependent. Further investigations into the effector cells involved in the production of MIF have revealed that spleen cells from mice immunized with MSV cannot produce MIF when stimulated with tumor extract if the population has been previously depleted of macrophages. However, the response can be restored by adding nonimmune syngeneic macrophages but not by allogeneic macrophages. The inability of allogeneic macrophages to provide this function was not due to their increased suppressor activity since in mixing experiments they did not interfere with the ability of immune spleen cells to produce MIF. Furthermore, they were not defective since they could supply this "cooperative function" to appropriate F1 mice. The results indicate that macrophages are required for stimulation of MIF by soluble tumor antigens and that for efficient interaction the macrophages and lymphocytes must share some genetic similarities.  相似文献   

17.
CD4+CD25+ T cells represent a unique population of "professional" suppressor T cells that prevent induction of organ-specific autoimmune disease. In vitro, CD4+CD25+ cells were anergic to simulation via the TCR and when cultured with CD4+CD25- cells, markedly suppressed polyclonal T cell proliferation by specifically inhibiting the production of IL-2. Suppression was cytokine independent, cell contact dependent, and required activation of the suppressors via their TCR. Further characterization of the CD4+CD25+ population demonstrated that they do not contain memory or activated T cells and that they act through an APC-independent mechanism. CD4+CD25+ T cells isolated from TCR transgenic (Tg) mice inhibited responses of CD4+CD25- Tg T cells to the same Ag, but also inhibited the Ag-specific responses of Tg cells specific for a distinct Ag. Suppression required that both peptide/MHC complexes be present in the same culture, but the Ags could be presented by two distinct populations of APC. When CD4+CD25+ T cells were cultured with anti-CD3 and IL-2, they expanded, remained anergic, and in the absence of restimulation via their TCR, suppressed Ag-specific responses of CD4+CD25- T cells from multiple TCR transgenics. Collectively, these data demonstrate that CD4+CD25+ T cells require activation via their TCR to become suppressive, but once activated, their suppressor effector function is completely nonspecific. The cell surface molecules involved in this T-T interaction remain to be characterized.  相似文献   

18.
The neurosecretory cells of Dysdercus similis have been described. "A", "B", "C" and "D" types of neurosecretory cells are present. The "A" type of cells of the pars-intercerebralis show cyclical secretion. When these cells show secretory activity during one to three days of emergence, they have scattered granules. The cells are seen packed with clumps of neurosecretory material when they are not secreting, and this is interpreted as a storage stage. The axons of these cells supply the corpora cardiaca and some neurosecretory material also reaches the corpus allatum. The release of this neurosecretory material can be correlated both with moulting in the young stages and later with reproduction in the adults.  相似文献   

19.
Summary Microbodies are ubiquitous organelles in fungal cells, occurring in both vegetative hyphae and spores. They are bounded by a single membrane and may contain a crystalloid inclusion with subunits spaced at regular intervals. Typically, they contain catalase which reacts with the cytochemical stain 3,3-diaminobenzidine to yield an electron-opaque product, urate oxidase,l--hydroxy acid oxidase andd-amino acid oxidase. Their fragility and the necessity to disrupt the tough fungal cell wall before isolating them make them difficult to isolate. Analysis of enzymes in purified or partially purified microbodies from fungi indicates that they participate in fatty acid degradation, the glyoxylate cycle, purine metabolism, methanol oxidation, assimilation of nitrogenous compounds, amine metabolism and oxalate synthesis. In organisms where microbodies are known to contain enzymes of the glyoxylate cycle, they are known as glyoxysomes; where they are known to contain peroxidatic activity, they are known as peroxisomes. In some cases microbodies contain enzymes for only a portion of a pathway or cycle. Thus, they must be involved in metabolic cooperation with other organelles, particularly mitochondria. The number, size and shape of microbodies in cells, their buoyant density and their enzyme contents may vary with the composition of the medium; their proliferation in cells is regulated by the growth environment. The isolation from the same organism of microbodies with different buoyant densities and different enzymes suggests strongly that more than one type of microbody can be formed by fungi.  相似文献   

20.
Affinity maturation of humoral responses to T-cell-dependent antigens occurs in germinal centers (GC). In GCs antigen-specific B cells undergo rounds of somatic mutations that alter their affinity. High-affinity mutants take over GCs very soon after they appear; the replacement rate is as high as 4 per day (Radmacher et al., Immunol. Cell Biol. 76 (1998) 373). To gain more insight into this selection process, we present a spatial model of GC reactions, where B cells compete for survival signals from follicular dendritic cells (FDC). Assuming that high-affinity B cells have increased cellular adhesion to FDCs, we obtain an affinity-based sorting of B cells on the FDC. This sorting imposes a very strong selection and therefore results in a winner-takes-all behavior. By comparing our sorting model with "affinity-proportional selection models", we show that this winner-takes-all selection is in fact required to account for the fast rates at which high affinity mutants take over GCs. Another important feature of in vivo GC reactions is that they are non-mixed, i.e. GCs contain either no high-affinity cells at all or they are dominated by high-affinity cells. We here show that this all-or-none behavior can be obtained if B cells are sorted based on their affinity on the FDC surface. Affinity-proportional selection models, in contrast, always produce mixed GCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号