首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth or virulence of Mycobacterium tuberculosis bacilli depends on homologous type VII secretion systems, ESX‐1, ESX‐3 and ESX‐5, which export a number of protein effectors across membranes to the bacterial surface and environment. PE and PPE proteins represent two large families of highly polymorphic proteins that are secreted by these ESX systems. Recently, it was shown that these proteins require system‐specific cytoplasmic chaperones for secretion. Here, we report the crystal structure of M. tuberculosis ESX‐5‐secreted PE25–PPE41 heterodimer in complex with the cytoplasmic chaperone EspG5. EspG5 represents a novel fold that is unrelated to previously characterized secretion chaperones. Functional analysis of the EspG5‐binding region uncovered a hydrophobic patch on PPE41 that promotes dimer aggregation, and the chaperone effectively abolishes this process. We show that PPE41 contains a characteristic chaperone‐binding sequence, the hh motif, which is highly conserved among ESX‐1‐, ESX‐3‐ and ESX‐5‐specific PPE proteins. Disrupting the interaction between EspG5 and three different PPE target proteins by introducing different point mutations generally affected protein secretion. We further demonstrate that the EspG5 chaperone plays an important role in the ESX secretion mechanism by keeping aggregation‐prone PE–PPE proteins in their soluble state.  相似文献   

2.
Mycobacteria use the dedicated type VII protein secretion systems ESX-1 and ESX-5 to secrete virulence factors across their highly hydrophobic cell envelope. The substrates of these systems include the large mycobacterial PE and PPE protein families, which are named after their characteristic Pro-Glu and Pro-Pro-Glu motifs. Pathogenic mycobacteria secrete large numbers of PE/PPE proteins via the major export pathway, ESX-5. In addition, a few PE/PPE proteins have been shown to be exported by ESX-1. It is not known how ESX-1 and ESX-5 recognize their cognate PE/PPE substrates. In this work, we investigated the function of the cytosolic protein EspG(5), which is essential for ESX-5-mediated secretion in Mycobacterium marinum, but for which the role in secretion is not known. By performing protein co-purifications, we show that EspG(5) interacts with several PPE proteins and a PE/PPE complex that is secreted by ESX-5, but not with the unrelated ESX-5 substrate EsxN or with PE/PPE proteins secreted by ESX-1. Conversely, the ESX-1 paralogue EspG(1) interacted with a PE/PPE couple secreted by ESX-1, but not with PE/PPE substrates of ESX-5. Furthermore, structural analysis of the complex formed by EspG(5) and PE/PPE indicates that these proteins interact in a 1:1:1 ratio. In conclusion, our study shows that EspG(5) and EspG(1) interact specifically with PE/PPE proteins that are secreted via their own ESX systems and suggests that EspG proteins are specific chaperones for the type VII pathway.  相似文献   

3.
Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow-growing mycobacteria.  相似文献   

4.
The ESX-5 secretion system of pathogenic mycobacteria is responsible for the secretion of various PPE and PE-PGRS proteins. To better understand the role of ESX-5 effector proteins in virulence, we analyzed the interactions of Mycobacterium marinum ESX-5 mutant with human macrophages (Mphi). Both wild-type bacteria and the ESX-5 mutant were internalized and the ESX-5 mutation did not affect the escape of mycobacteria from phagolysosomes into the cytosol, as was shown by electron microscopy. However, the ESX-5 mutation strongly effected expression of surface Ags and cytokine secretion. Whereas wild-type M. marinum actively suppressed the induction of appreciable levels of IL-12p40, TNF-alpha, and IL-6, infection with the ESX-5 mutant resulted in strongly induced production of these proinflammatory cytokines. By contrast, infection with M. marinum wild-type strain resulted in a significant induction of IL-1beta production as compared with the ESX-5 mutant. These results show that ESX-5 plays an essential role in the modulation of immune cytokine secretion by human Mphi. Subsequently, we show that an intact ESX-5 secretion system actively suppresses TLR signaling-dependent innate immune cytokine secretion. Together, our results show that ESX-5 substrates, directly or indirectly, strongly modulate the human Mphi response at various critical steps.  相似文献   

5.
结核分枝杆菌作为肺结核病的病原菌,在人类中致死率远高于其他病原菌.结核分枝杆菌具有特殊的疏水性细胞壁结构,这种致密的细胞壁结构帮助结核分枝杆菌抵御外界环境压力和来自宿主细胞的毒素.同时,它利用特殊的分泌系统将体内的毒力蛋白输出体外,ESX-1分泌系统就是其中之一.结核分枝杆菌ESX-1系统在结核分枝杆菌进入宿主细胞吞噬小体、逃逸至细胞质以及杀死吞噬细胞这些过程中发挥重要作用.研究表明,在结核分枝杆菌内膜上存在一个由多亚基组成、旨在帮助结核分枝杆菌向外输送分泌蛋白的分泌装置.在这个分泌装置的帮助下,结核分枝杆菌重要的毒力蛋白ESAT-6跨内膜向外分泌,EspB也通过这个内膜上的分泌装置被转运至胞外.EspB存在于静置培养的结核分枝杆菌的胶囊层中,也可在振荡培养的结核分枝杆菌的培养液中被检测.通过X射线晶体衍射分析,我们解析了EspB的晶体结构,相比于其他同源结构,发现了EspB的不同构象,即EspB单体能够自组装成为七聚体的规则结构,联系其与毒力因子ESAT-6具有共分泌的特点,七聚体构象的发现为解释EspB在结核分枝杆菌向外分泌蛋白的过程中发挥的作用提供线索,即EspB具有锚定在结核分枝杆菌胶囊层中,作为运输ESAT-6的孔道而存在的可能.  相似文献   

6.
ESX-5 is one of the five type VII secretion systems found in mycobacteria. These secretion systems are also known as ESAT-6-like secretion systems. Here, we have determined the secretome of ESX-5 by a proteomic approach in two different strains of Mycobacterium marinum . Comparison of the secretion profile of wild-type strains and their ESX-5 mutants showed that a number of PE_PGRS and PPE-MPTR proteins are dependent on ESX-5 for transport. The PE and PPE protein families are unique to mycobacteria, are highly expanded in several pathogenic species, such as Mycobacterium tuberculosis and M. marinum , and certain family members are cell surface antigens associated with virulence. Using a monoclonal antibody directed against the PGRS domain we showed that nearly all PE_PGRS proteins that are recognized by this antibody are missing in the supernatant of ESX-5 mutants. In addition to PE_PGRS and PPE proteins, the ESX-5 secretion system is responsible for the secretion of a ESAT-6-like proteins. Together, these data show that ESX-5 is probably a major secretion pathway for mycobacteria and that this system is responsible for the secretion of recently evolved PE_PGRS and PPE proteins.  相似文献   

7.
Mycobacterium tuberculosis harbors over 160 genes encoding PE/PPE proteins, several of which have roles in the pathogen’s virulence. A number of PE/PPE proteins are secreted via Type VII secretion systems known as the ESX secretion systems. One PE protein, LipY, has a triglyceride lipase domain in addition to its PE domain. LipY can regulate intracellular triglyceride levels and is also exported to the cell wall by one of the ESX family members, ESX-5. Upon export, LipY’s PE domain is removed by proteolytic cleavage. Studies using cells and crude extracts suggest that LipY’s PE domain not only directs its secretion by ESX-5, but also functions to inhibit its enzymatic activity. Here, we attempt to further elucidate the role of LipY’s PE domain in the regulation of its enzymatic activity. First, we established an improved purification method for several LipY variants using detergent micelles. We then used enzymatic assays to confirm that the PE domain down-regulates LipY activity. The PE domain must be attached to LipY in order to effectively inhibit it. Finally, we determined that full length LipY and the mature lipase lacking the PE domain (LipYΔPE) have similar melting temperatures. Based on our improved purification strategy and activity-based approach, we concluded that LipY’s PE domain down-regulates its enzymatic activity but does not impact the thermal stability of the enzyme.  相似文献   

8.
Mycobacteria use specialized type VII (ESX) secretion systems to export proteins across their complex cell walls. Mycobacterium tuberculosis encodes five nonredundant ESX secretion systems, with ESX-1 being particularly important to disease progression. All ESX loci encode extracellular membrane-bound proteases called mycosins (MycP) that are essential to secretion and have been shown to be involved in processing of type VII-exported proteins. Here, we report the first x-ray crystallographic structure of MycP1(24–407) to 1.86 Å, defining a subtilisin-like fold with a unique N-terminal extension previously proposed to function as a propeptide for regulation of enzyme activity. The structure reveals that this N-terminal extension shows no structural similarity to previously characterized protease propeptides and instead wraps intimately around the catalytic domain where, tethered by a disulfide bond, it forms additional interactions with a unique extended loop that protrudes from the catalytic core. We also show MycP1 cleaves the ESX-1 secreted protein EspB from both M. tuberculosis and Mycobacterium smegmatis at a homologous cut site in vitro.  相似文献   

9.
The type VII secretion system ESX-5 is a major pathway for export of PE and PPE proteins in pathogenic mycobacteria. These mycobacteria-specific protein families are characterized by conserved N-terminal domains of 100 and 180 amino acids, which contain the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) motifs after which they are named. Here we investigated secretion of the triacylglycerol lipase LipY, which in fast-growing mycobacteria contains a signal sequence, but in slow-growing species appears to have replaced the signal peptide with a PE or PPE domain. Selected LipY homologues were expressed in wild-type Mycobacterium marinum and its corresponding ESX-5 mutant, and localization of the proteins was investigated by immunoblotting and electron microscopy. Our study shows that Mycobacterium tuberculosis PE-LipY (LipY(tub)) and M. marinum PPE-LipY (LipY(mar)) are both secreted to the bacterial surface in an ESX-5-dependent fashion. After transport, the PE/PPE domains are removed by proteolytic cleavage. In contrast, Mycobacterium gilvum LipY, which has a signal sequence, is not transported to the cell surface. Furthermore, we show that LipY(tub) and LipY(mar) require their respective PE and PPE domains for ESX-5-dependent secretion. The role of the PE domain in ESX-5 secretion was confirmed in a whole cell lipase assay, in which wild-type bacteria expressing full-length LipY(tub), but not LipY(tub) lacking its PE domain, were shown to hydrolyze extracellular lipids. In conclusion, both PE and PPE domains contain a signal required for secretion of LipY by the ESX-5 system, and these domains are proteolytically removed upon translocation.  相似文献   

10.
Mycobacteria use type VII secretion systems (T7SSs) to translocate a wide range of proteins across their diderm cell envelope. These systems, also called ESX systems, are crucial for the viability and/or virulence of mycobacterial pathogens, including Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. We have previously shown that the M. tuberculosis ESX-5 system is unable to fully complement secretion in an M. marinum esx-5 mutant, suggesting species specificity in secretion. In this study, we elaborated on this observation and established that the membrane ATPase EccC5, possessing four (putative) nucleotide-binding domains (NBDs), is responsible for this. By creating M. marinum-M. tuberculosis EccC5 chimeras, we observed both in M. marinum and in M. tuberculosis that secretion specificity of PE_PGRS proteins depends on the presence of the cognate linker 2 domain of EccC5. This region connects NBD1 and NBD2 of EccC5 and is responsible for keeping NBD1 in an inhibited state. Notably, the ESX-5 substrate EsxN, predicted to bind to NBD3 on EccC5, showed a distinct secretion profile. These results indicate that linker 2 is involved in species-specific substrate recognition and might therefore be an additional substrate recognition site of EccC5.  相似文献   

11.
12.
Highlights? Mtb ESX-5-associated and -nonassociated PE/PPE proteins are highly immunogenic ? ESX-5 core component eccD5 modulates the mycobacterial antigenic repertoire ? ESX-5 PE/PPE deleted Δppe25-pe19 Mtb strain is avirulent, yet strongly immunogenic ? Δppe25-pe19 strain protects mice against Mtb infection and represents a vaccine candidate  相似文献   

13.
Mycobacterium tuberculosis, the etiological agent of human tuberculosis, harbours five ESAT‐6/type VII secretion (ESX/T7S) systems. The first esx gene clusters were identified during the genome‐sequencing project of M. tuberculosis H37Rv. Follow‐up studies revealed additional genes playing important roles in ESX/T7S systems. Among the latter genes, one can find those that encode Pro‐Glu (PE) and Pro‐Pro‐Glu (PPE) proteins as well as a gene cluster that is encoded >260 kb upstream of the esx‐1 locus and encodes ESX‐1 secretion‐associated proteins EspA (Rv3616c), EspC (Rv3615c) and EspD (Rv3614c). The espACD cluster has been suggested to have an important function in ESX‐1 secretion since EspA‐EspC and EsxA–EsxB are mutually co‐dependent on each other for secretion. However, the molecular mechanism of this co‐dependence and interaction between the substrates remained unknown. In this issue of Molecular Microbiology, Lou and colleagues show that EspC forms high‐molecular weight polymerization complexes that resemble selected components of type II, III and/or IV secretion systems of Gram‐negative bacteria. Indeed, EspC‐multimeric complexes form filamentous structures that could well represent a secretion needle of ESX‐1 type VII secretion systems. This exciting observation opens new avenues for research to discover and characterize ESX/T7S components and elucidates the co‐dependence of EsxA/B secretion with EspA/C.  相似文献   

14.
The chromosome of Mycobacterium tuberculosis encodes five type VII secretion systems (ESX-1-ESX-5). While the role of the ESX-1 and ESX-3 systems in M. tuberculosis has been elucidated, predictions for the function of the ESX-5 system came from data obtained in Mycobacterium marinum, where it transports PPE and PE_PGRS proteins and modulates innate immune responses. To define the role of the ESX-5 system in M. tuberculosis, in this study, we have constructed five M. tuberculosis H37Rv ESX-5 knockout/deletion mutants, inactivating eccA(5), eccD(5), rv1794 and esxM genes or the ppe25-pe19 region. Whereas the Mtbrv1794ko displayed no obvious phenotype, the other four mutants showed defects in secretion of the ESX-5-encoded EsxN and PPE41, a representative member of the large PPE protein family. Strikingly, the MtbeccD(5) ko mutant also showed enhanced sensitivity to detergents and hydrophilic antibiotics. When the virulence of the five mutants was evaluated, the MtbeccD(5) ko and MtbΔppe25-pe19 mutants were found attenuated both in macrophages and in the severe combined immune-deficient mouse infection model. Altogether these findings indicate an essential role of ESX-5 for transport of PPE proteins, cell wall integrity and full virulence of M. tuberculosis, thereby opening interesting new perspectives for the study of this human pathogen.  相似文献   

15.

Background

Mycobacterium tuberculosis continues to kill more people than any other bacterium. Although its archetypal host cell is the macrophage, it also enters, and survives within, dendritic cells (DCs). By modulating the behaviour of the DC, M. tuberculosis is able to manipulate the host’s immune response and establish an infection. To identify the M. tuberculosis genes required for survival within DCs we infected primary human DCs with an M. tuberculosis transposon library and identified mutations with a reduced ability to survive.

Results

Parallel sequencing of the transposon inserts of the surviving mutants identified a large number of genes as being required for optimal intracellular fitness in DCs. Loci whose mutation attenuated intracellular survival included those involved in synthesising cell wall lipids, not only the well-established virulence factors, pDIM and cord factor, but also sulfolipids and PGL, which have not previously been identified as having a direct virulence role in cells. Other attenuated loci included the secretion systems ESX-1, ESX-2 and ESX-4, alongside many PPE genes, implicating a role for ESX-5. In contrast the canonical ESAT-6 family of ESX substrates did not have intra-DC fitness costs suggesting an alternative ESX-1 associated virulence mechanism. With the aid of a gene-nutrient interaction model, metabolic processes such as cholesterol side chain catabolism, nitrate reductase and cysteine-methionine metabolism were also identified as important for survival in DCs.

Conclusion

We conclude that many of the virulence factors required for survival in DC are shared with macrophages, but that survival in DCs also requires several additional functions, such as cysteine-methionine metabolism, PGLs, sulfolipids, ESX systems and PPE genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1569-2) contains supplementary material, which is available to authorized users.  相似文献   

16.
ESX-5 is a mycobacterial type VII protein secretion system responsible for transport of numerous PE and PPE proteins. It is involved in the induction of host cell death and modulation of the cytokine response in vitro. In this work, we studied the effects of ESX-5 in embryonic and adult zebrafish using Mycobacterium marinum. We found that ESX-5-deficient M. marinum was slightly attenuated in zebrafish embryos. Surprisingly, the same mutant showed highly increased virulence in adult zebrafish, characterized by increased bacterial loads and early onset of granuloma formation with rapid development of necrotic centres. This early onset of granuloma formation was accompanied by an increased expression of pro-inflammatory cytokines and tissue remodelling genes in zebrafish infected with the ESX-5 mutant. Experiments using RAG-1-deficient zebrafish showed that the increased virulence of the ESX-5 mutant was not dependent on the adaptive immune system. Mixed infection experiments with wild-type and ESX-5 mutant bacteria showed that the latter had a specific advantage in adult zebrafish and outcompeted wild-type bacteria. Together our experiments indicate that ESX-5-mediated protein secretion is used by M. marinum to establish a moderate and persistent infection.  相似文献   

17.
Mycobacterial ESX systems are often related to pathogenesis during infection. However, little is known about the function of ESX systems of Mycobacterium abscessus (Mab). This study focuses on the Mab ESX-3 cluster, which contains major genes such as esxH (Rv0288, low molecular weight protein antigen 7; CFP-7) and esxG (Rv0287, ESAT-6 like protein). An esx-3 (MAB 2224c-2234c)-deletional mutant of Mab (Δesx) was constructed and used to infect murine and human macrophages. We then investigated whether Mab Δesx modulated innate host immune responses in macrophages. Mab Δesx infection resulted in less pathological and inflammatory responses. Additionally, Δesx resulted in significantly decreased activation of inflammatory signaling and cytokine production in macrophages compared to WT. Moreover, recombinant EsxG·EsxH (rEsxGH) proteins encoded by the ESX-3 region showed synergistic enhancement of inflammatory cytokine generation in macrophages infected with Δesx. Taken together, our data suggest that Mab ESX-3 plays an important role in inflammatory and pathological responses during Mab infection.  相似文献   

18.
Das C  Ghosh TS  Mande SS 《PloS one》2011,6(11):e27980
Type VII secretion system (T7SS) is a recent discovery in bacterial secretion systems. First identified in Mycobacterium tuberculosis, this secretion system has later been reported in organisms belonging to the Actinomycetales order and even to distant phyla like Firmicutes. The genome of M. tuberculosis H37Rv contains five gene clusters that have evolved through gene duplication events and include components of the T7SS secretion machinery. These clusters are called ESAT-6 secretion system (ESX) 1 through 5. Out of these, ESX-1 has been the most widely studied region because of its pathological importance. In spite of this, the overall mechanism of protein translocation through ESX-1 secretion machinery is not clearly understood. Specifically, the structural components contributing to the translocation through the mycomembrane have not been characterized yet. In this study, we have carried out a comprehensive in silico analysis of the genes known to be involved in ESX-1 secretion pathway and identified putative proteins having high probability to be associated with this particular pathway. Our study includes analysis of phylogenetic profiles, identification of domains, transmembrane helices, 3D folds, signal peptides and prediction of protein-protein associations. Based on our analysis, we could assign probable novel functions to a few of the ESX-1 components. Additionally, we have identified a few proteins with probable role in the initial activation and formation of mycomembrane translocon of ESX-1 secretion machinery. We also propose a probable working model of T7SS involving ESX-1 secretion pathway.  相似文献   

19.
EsxA (ESAT-6) and EsxB (CFP-10) are virulence factors exported by the ESX-1 system in mycobacterial pathogens. In Mycobacterium marinum, an established model for ESX-1 secretion in Mycobacterium tuberculosis, genes required for ESX-1 export reside at the extended region of difference 1 (RD1) locus. In this study, a novel locus required for ESX-1 export in M. marinum was identified outside the RD1 locus. An M. marinum strain bearing a transposon-insertion between the MMAR_1663 and MMAR_1664 genes exhibited smooth-colony morphology, was deficient for ESX-1 export, was nonhemolytic, and was attenuated for virulence. Genetic complementation revealed a restoration of colony morphology and a partial restoration of virulence in cell culture models. Yet hemolysis and the export of ESX-1 substrates into the bacteriological medium in vitro as measured by both immunoblotting and quantitative proteomics were not restored. We show that genetic complementation of the transposon insertion strain partially restored the translocation of EsxA and EsxB to the mycobacterial cell surface. Our findings indicate that the export of EsxA and EsxB to the cell surface, rather than secretion into the bacteriological medium, correlates with virulence in M. marinum. Together, these findings not only expand the known genetic loci required for ESX-1 secretion in M. marinum but also provide an explanation for the observed disparity between in vitro ESX-1 export and virulence.  相似文献   

20.
The genome of Mycobacterium, including Mycobacterium tuberculosis, contains five copies of a cluster of genes encoding a novel type VII secretion system, named the ESX gene cluster region. This ESX-3 gene cluster is essential for in vitro growth and is thought to play a role in iron and zinc homeostasis, however, its exact functionality remains an enigma. A metabolomics research approach was subsequently used to compare the metabolite profiles of a M. smegmatis ESX-3 knockout strain to that a wild type parental strain, in order to elucidate its functionality from a metabolic perspective. Statistical analysis of the GC–MS generated data showed a clear separation between the wild type and knockout sample groups, based on the analysed metabolite profiles of these organisms. Of all the metabolite markers identified, various amino acids and metabolite pathways related to these, appeared to be most affected by the ESX-3 knockout, especially those with enzymes regulated by iron and zinc, supporting previous genomics and proteomics generated hypotheses and findings. This study is the first to demonstrate the capacity of using metabolomics, in conjunction with previous genomics and proteomic findings, to identify underlying metabolic changes and confirm previous hypotheses related to the functionality of ESX-3 in Mycobacterium growth and survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号