首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Intrinsically disordered proteins (IDPs) exist without the presence of a stable tertiary structure in isolation. These proteins are often involved in molecular recognition processes via their disordered binding regions that can recognize partner molecules by undergoing a coupled folding and binding process. The specific properties of disordered binding regions give way to specific, yet transient interactions that enable IDPs to play central roles in signaling pathways and act as hubs of protein interaction networks. An alternative model of protein-protein interactions with largely overlapping functional properties is offered by the concept of linear interaction motifs. This approach focuses on distilling a short consensus sequence pattern from proteins with a common interaction partner. These motifs often reside in disordered regions and are considered to mediate the interaction roughly independent from the rest of the protein. Although a connection between linear motifs and disordered binding regions has been established through common examples, the complementary nature of the two concepts has yet to be fully explored. In many cases the sequence based definition of linear motifs and the structural context based definition of disordered binding regions describe two aspects of the same phenomenon. To gain insight into the connection between the two models, prediction methods were utilized. We combined the regular expression based prediction of linear motifs with the disordered binding region prediction method ANCHOR, each specialized for either model to get the best of both worlds. The thorough analysis of the overlap of the two methods offers a bioinformatics tool for more efficient binding site prediction that can serve a wide range of practical implications. At the same time it can also shed light on the theoretical connection between the two co-existing interaction models.  相似文献   

2.
Intrinsically disordered proteins (IDPs) regularly constitute components of larger protein assemblies contributing to architectural stability. Two small, highly acidic IDPs have been linked to the so‐called PCI complexes carrying PCI‐domain subunits, including the proteasome lid and the COP9 signalosome. These two IDPs, DSS1 and CSNAP, have been proposed to have similar structural propensities and functions, but they display differences in their interactions and interactome sizes. Here we characterized the structural properties of human DSS1 and CSNAP at the residue level using NMR spectroscopy and probed their propensities to bind ubiquitin. We find that distinct structural features present in DSS1 are completely absent in CSNAP, and vice versa, with lack of relevant ubiquitin binding to CSNAP, suggesting the two proteins to have diverged in both structure and function. Our work additionally highlights that different local features of seemingly similar IDPs, even subtle sequence variance, may endow them with different functional traits. Such traits may underlie their potential to engage in multiple interactions thereby impacting their interactome sizes.  相似文献   

3.
Huang Y  Liu Z 《Proteins》2010,78(16):3251-3259
Intrinsically disordered proteins (IDPs) widely participate in molecular recognition and signaling processes in cells by interacting with other molecules. Compared with ordered proteins, IDPs usually possess stronger intermolecular interactions in binding. As a result, the interface structure of IDPs in complexes is distinct from that of ordered-protein complexes, and this difference may have essential effect on the response to various perturbations in a cell. In this study, we examined the perturbations of intermolecular interactions and temperature on the coupled folding and binding processes of pKID to KIX domains by performing molecular dynamics simulations. By comparing a series of virtual pKID systems with various degree of disorder, we found that the complex stability and the binding kinetics of the disordered systems were less sensitive to the perturbations than the ordered systems. The origin of the lower response sensitivity of IDPs was attributed to their higher flexibility in the complex interface, which was further supported by an analysis on protein complex structures. On the basis of our simulations and results from the literature, we speculate IDPs may not only interact with their biological partners with high specificity and low affinity but also may be resistant to the perturbations in the environment and transmit signals fast and smooth. We proposed to name it the "kinetic buffer" effect.  相似文献   

4.
The sequence–structure–function paradigm of proteins has been revolutionized by the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstructured under physiological conditions. The absence of well‐defined three‐dimensional structures in the free state of IDPs/IDRs is fundamental to their function. Folding upon binding is an important mode of molecular recognition for IDPs/IDRs. While great efforts have been devoted to investigating the complex structures and binding kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs remains very limited. Here, we review recent advances on the binding mechanisms of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly, and the binding mechanisms can be highly dependent on the structural properties of IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection and induced fit in a binding process, which can be templated by the target and/or encoded by the IDP/IDR. Further studies should provide deeper insights into the molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR binding mechanisms in the future.  相似文献   

5.
Intrinsically disordered proteins (IDPs) defy the structure-function paradigm as they fulfill essential biological functions while lacking well-defined secondary and tertiary structures. Conformational and spectroscopic analyses showed that IDPs do not constitute a uniform family, and can be divided into subfamilies as a function of their residual structure content. Residual intramolecular interactions are thought to facilitate binding to a partner and then induced folding. Comprehensive information about experimental approaches to investigate structural disorder and induced folding is still scarce. We herein provide hints to readily recognize features typical of intrinsic disorder and review the principal techniques to assess structural disorder and induced folding. We describe their theoretical principles and discuss their respective advantages and limitations. Finally, we point out the necessity of using different approaches and show how information can be broadened by the use of multiples techniques.  相似文献   

6.
Viruses have compact genomes that encode limited number of proteins in comparison to other biological entities. Interestingly, viral proteins have shown natural abundance of either completely disordered proteins that are recognized as intrinsically disorder proteins (IDPs) or partially disordered segments known as intrinsically disordered protein regions (IDPRs). IDPRs are involved in interactions with multiple binding partners to accomplish signaling, regulation, and control functions in cells. Tuning of IDPs and IDPRs are mediated through post-translational modification and alternative splicing. Often, the interactions of IDPRs with their binding protein partner(s) lead to transition from the state of disorder to ordered form. Such interaction-prone protein IDPRs are identified as molecular recognition features (MoRFs). Molecular recognition is an important initial step for the biomolecular interactions and their functional proceedings. Although previous studies have established occurrence of the IDPRs in Zika virus proteome, which provide the functional diversity and structural plasticity to viral proteins, the MoRF analysis has not been performed as of yet. Many computational methods have been developed for the identification of the MoRFs in protein sequences including ANCHOR, MoRFpred, DISOPRED3, and MoRFchibi_web server. In the current study, we have investigated the presence of MoRF regions in structural and non-structural proteins of Zika virus using an aforementioned set of computational techniques. Furthermore, we have experimentally validated the intrinsic disorderness of NS2B cofactor region of NS2B–NS3 protease. NS2B has one of the longest MoRF regions in Zika virus proteome. In future, this study may provide valuable information while investigating the virus host protein interaction networks.  相似文献   

7.
8.
Intrinsically disordered proteins (IDPs) lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo) can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD) simulations combined with replica exchange (RX) method efficiently samples the conformational space and detects regions populating α-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts α-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect α-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available.  相似文献   

9.
Plant resistance proteins (R) are involved in pathogen recognition and subsequent initiation of defence responses. Their activity is regulated by inter- and intramolecular interactions. In a yeast two-hybrid screen two clones (I2I-1 and I2I-2) specifically interacting with I-2, a Fusarium oxysporum f. sp. lycopersici resistance protein of the CC-NB-LRR family, were identified. Sequence analysis revealed that I2I-1 belongs to the Formin gene family (SlFormin) whereas I2I-2 has homology to translin-associated protein X (SlTrax). SlFormin required only the N-terminal CC I-2 domain for binding, whereas SlTrax required both I-2 CC and part of the NB-ARC domain. Tomato plants stably silenced for these interactors were not compromised in I-2-mediated disease resistance. When extended or mutated forms of I-2 were used as baits, distinct and often opposite, interaction patterns with the two interactors were observed. These interaction patterns correlated with the proposed activation state of I-2 implying that active and inactive R proteins adopt distinct conformations. It is concluded that the yeast two hybrid system can be used as a proxy to monitor these different conformational states.  相似文献   

10.
11.
Deciphering the whole network of protein interactions for a given proteome (‘interactome’) is the goal of many experimental and computational efforts in Systems Biology. Separately the prediction of the structure of protein complexes by docking methods is a well‐established scientific area. To date, docking programs have not been used to predict interaction partners. We provide a proof of principle for such an approach. Using a set of protein complexes representing known interactors in their unbound form, we show that a standard docking program can distinguish the true interactors from a background of 922 non‐redundant potential interactors. We additionally show that true interactions can be distinguished from non‐likely interacting proteins within the same structural family. Our approach may be put in the context of the proposed ‘funnel‐energy model’; the docking algorithm may not find the native complex, but it distinguishes binding partners because of the higher probability of favourable models compared with a collection of non‐binders. The potential exists to develop this proof of principle into new approaches for predicting interaction partners and reconstructing biological networks.  相似文献   

12.
Burz DS  Shekhtman A 《PloS one》2008,3(7):e2571
Biochemistry and structural biology are undergoing a dramatic revolution. Until now, mostly in vitro techniques have been used to study subtle and complex biological processes under conditions usually remote from those existing in the cell. We developed a novel in-cell methodology to post-translationally modify interactor proteins and identify the amino acids that comprise the interaction surface of a target protein when bound to the post-translationally modified interactors. Modifying the interactor proteins causes structural changes that manifest themselves on the interacting surface of the target protein and these changes are monitored using in-cell NMR. We show how Ubiquitin interacts with phosphorylated and non-phosphorylated components of the receptor tyrosine kinase (RTK) endocytic sorting machinery: STAM2 (Signal-transducing adaptor molecule), Hrs (Hepatocyte growth factor regulated substrate) and the STAM2-Hrs heterodimer. Ubiquitin binding mediates the processivity of a large network of interactions required for proper functioning of the RTK sorting machinery. The results are consistent with a weakening of the network of interactions when the interactor proteins are phosphorylated. The methodology can be applied to any stable target molecule and may be extended to include other post-translational modifications such as ubiquitination or sumoylation, thus providing a long-awaited leap to high resolution in cell biochemistry.  相似文献   

13.
The classical protein structure-function paradigm has been challenged by the emergence of intrinsically disordered proteins (IDPs), the proteins that do not adopt well-defined three-dimensional structures under physiological conditions. This development was accompanied by the introduction of a “coupled binding and folding” paradigm that suggests folding of IDPs upon binding to their partners. However, our recent studies challenge this general view by revealing a novel, previously unrecognized phenomenon – uncoupled binding and folding. This biologically important mechanism is characteristic of members of a new family of IDPs involved in immune signaling and underlies their unusual properties including: (1) specific homodimerization, (2) the lack of folding upon binding to a well-folded protein, another IDP molecule, or to lipid bilayer membranes, and (3) the “scissors-cut paradox”. The third phenomenon occurs in diverse IDP interactions and suggests that properties of IDP fragments are not necessarily additive in the context of the entire protein. The “no disorder-to-order transition” type of binding is distinct from known IDP interactions and is characterized by an unprecedented observation of the lack of chemical shift and peak intensity changes in multidimensional NMR spectra, a fingerprint of proteins, upon complex formation. Here, I focus on those interactions of IDPs with diverse biological partners where the binding phase driven by electrostatic interactions is not be necessarily followed by the hydrophobic folding phase. I also review new multidisciplinary knowledge about immune signaling-related IDPs and show how it expands our understanding of cell function with multiple applications in biology and medicine.  相似文献   

14.
Proteins have several measurable features in biological fluids that may change under pathological conditions. The current disease biomarker discovery is mostly based on protein concentration in the sample as the measurable feature. Changes in protein structures, such as post-translational modifications and in protein–partner interactions are known to accompany pathological processes. Changes in glycosylation profiles are well-established for many plasma proteins in various types of cancer and other diseases. The solvent interaction analysis method is based on protein partitioning in aqueous two-phase systems and is highly sensitive to changes in protein structure and protein–protein- and protein–partner interactions while independent of the protein concentration in the biological sample. It provides quantitative index: partition coefficient representing changes in protein structure and interactions with partners. The fundamentals of the method are presented with multiple examples of applications of the method to discover and monitor structural protein biomarkers as disease-specific diagnostic indicators.  相似文献   

15.
Traditionally, well-defined three-dimensional structure has been thought to be essential for protein function. However, myriad biological functions are performed by highly dynamic, intrinsically disordered proteins (IDPs). IDPs often fold upon binding their biological targets and frequently show 'binding diversity' by targeting multiple ligands. We sought to understand the physical basis of IDP binding diversity and report here that the cyclin-dependent kinase (Cdk) inhibitor p21(Cip1) adaptively binds to and inhibits the various Cdk-cyclin complexes that regulate eukaryotic cell division. Using results from NMR spectroscopy and biochemical and cellular assays, we show that structural adaptability of a helical subdomain within p21, termed LH, enables two other subdomains, D1 and D2, to specifically bind conserved surface features of the cyclin and Cdk subunits, respectively, within otherwise structurally distinct Cdk-cyclin complexes. Adaptive folding upon binding is likely to mediate the diverse biological functions of the thousands of IDPs present in eukaryotes.  相似文献   

16.
Kinjo AR  Nakamura H 《PloS one》2012,7(2):e31437
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.  相似文献   

17.
18.
Szasz CS  Alexa A  Toth K  Rakacs M  Langowski J  Tompa P 《Biochemistry》2011,50(26):5834-5844
Crowding caused by the high concentrations of macromolecules in the living cell changes chemical equilibria, thus promoting aggregation and folding reactions of proteins. The possible magnitude of this effect is particularly important with respect to the physiological structure of intrinsically disordered proteins (IDPs), which are devoid of well-defined three-dimensional structures in vitro. To probe this effect, we have studied the structural state of three IDPs, α-casein, MAP2c, and p21(Cip1), in the presence of the crowding agents Dextran and Ficoll 70 at concentrations up to 40%, and also the small-molecule osmolyte, trimethylamine N-oxide (TMAO), at concentrations up to 3.6 M. The structures of IDPs under highly diluted and crowded conditions were compared by a variety of techniques, fluorescence spectroscopy, acrylamide quenching, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, fluorescence correlation spectroscopy (FCS), and far-UV and near-UV circular dichroism (CD) spectroscopy, which allow us to visualize various levels of structural organization within these proteins. We observed that crowding causes limited structural changes, which seem to reflect the functional requirements of these IDPs. α-Casein, a protein of nutrient function in milk, changes least under crowded conditions. On the other hand, MAP2c and, to a lesser degree, p21(Cip1), which carry out their functions by partner binding and accompanying partially induced folding, show signs of local structuring and also some global compaction upon crowded conditions, in particular in the presence of TMAO. The observations are compatible with the possible preformation of binding-competent conformations in these proteins. The magnitude of these changes, however, is far from that of the cooperative folding transitions elicited by crowding in denatured globular proteins; i.e., these IDPs do remain in a state of rapidly interconverting structural ensemble. Altogether, our results underline that structural disorder is the physiological state of these proteins.  相似文献   

19.
The mechanism of interaction of an intrinsically disordered protein (IDP) with its physiological partner is characterized by a disorder-to-order transition in which a recognition and a binding step take place. Even if the mechanism is quite complex, IDPs tend to bind their partner in a cooperative manner such that it is generally possible to detect experimentally only the disordered unbound state and the structured complex. The interaction between the disordered C-terminal domain of the measles virus nucleoprotein (NTAIL) and the X domain (XD) of the viral phosphoprotein allows us to detect and quantify the two distinct steps of the overall reaction. Here, we analyze the robustness of the folding of NTAIL upon binding to XD by measuring the effect on both the folding and binding steps of NTAIL when the structure of XD is modified. Because it has been shown that wild-type XD is structurally heterogeneous, populating an on-pathway intermediate under native conditions, we investigated the binding to 11 different site-directed variants of NTAIL of one particular variant of XD (I504A XD) that populates only the native state. Data reveal that the recognition and the folding steps are both affected by the structure of XD, indicating a highly malleable pathway. The experimental results are briefly discussed in the light of previous experiments on other IDPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号