首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Atomic force microscopy (AFM) techniques provide a versatile platform for imaging and manipulating living cells to single-molecule resolution, thereby enabling us to address pertinent questions in key areas of cell biology, including cell adhesion and signalling, embryonic and tissue development, cell division and shape, and microbial pathogenesis. In this review, we describe the principles of AFM, and survey recent breakthroughs made in AFM-based cell nanoscopy, showing how the technology has increased our molecular understanding of the organization, mechanics, interactions and processes of the cell surface. We also discuss the advantages and limitations of AFM techniques, and the challenges remaining to be addressed in future research.  相似文献   

2.
The interactive visualization of large biological assemblies poses a number of challenging problems, including the development of multiresolution representations and new interaction methods for navigating and analyzing these complex systems. An additional challenge is the development of flexible software environments that will facilitate the integration and interoperation of computational models and techniques from a wide variety of scientific disciplines. In this paper, we present a component-based software development strategy centered on the high-level, object-oriented, interpretive programming language: Python. We present several software components, discuss their integration, and describe some of their features that are relevant to the visualization of large molecular assemblies. Several examples are given to illustrate the interoperation of these software components and the integration of structural data from a variety of experimental sources. These examples illustrate how combining visual programming with component-based software development facilitates the rapid prototyping of novel visualization tools.  相似文献   

3.
The need to identify “toxicologically equivalent” doses across different species is a major issue in toxicology and risk assessment. In this article, we describe an approach for establishing default cross-species extrapolation factors used to scale oral doses across species for non-carcinogenic endpoints. This work represents part of an on-going effort to harmonize the way animal data are evaluated for carcinogenic and non-carcinogenic endpoints. In addition to considering default scaling factors, we also discuss how chemical-specific data (e.g., metabolic or mechanistic data) can be incorporated into the dose extrapolation process. After first examining the required properties of a default scaling methodology, we consider scaling approaches based on empirical relationships observed for particular classes of compounds and also more theoretical approaches based on general physiological principles (i.e, allometry). The available data suggest that the empirical and allometric approaches each provide support for the idea that toxicological risks are approximately equal when daily oral doses are proportional to body weight raised to the 3/4-power. We also discuss specific challenges for dose scaling related to different routes of exposure, acute versus chronic toxicity, and extrapolations related to particular life stages (e.g., childhood).  相似文献   

4.
The power of molecular genetic techniques to address ecological research questions has opened a distinct interdisciplinary research area collectively referred to as molecular ecology. Molecular ecology combines aspects of diverse research fields like population and evolutionary genetics, as well as biodiversity, conservation biology, behavioural ecology, or species-habitat interactions. Molecular techniques detect specific DNA sequence characteristics that are used as genetic markers to discriminate individuals or taxonomic groups, for instance in analyses of population and community structures, for elucidation of phylogenetic relationships, or for the characterization and monitoring of specific strains in the environment. Here, we summarize the PCR-based molecular techniques used in molecular ecological research on fungal entomopathogens and discuss novel techniques that may have relevance to the studies of entomopathogenic fungi in the future. We discuss the flow chart of the molecular ecology approaches and we highlight some of the critical steps involved. There are still many unresolved questions in the understanding of the ecology of fungal entomopathogens. These include population characteristics and relations of genotypes and habitats as well as host-pathogen interactions. Molecular tools can provide substantial support for ecological research and offer insight into this far inaccessible systems. Application of molecular ecology approaches will stimulate and accelerate new research in the field of entomophathogen ecology.  相似文献   

5.
In studying the ability of feed forward networks to perform perceptual tasks, we train a network to master a specific task, that of deciding whether a given object is to the left or to the right of another object. We discuss in general terms such issues as architecture, drilling, generalization, abstraction, learning from small examples, and versatility.  相似文献   

6.
Nucleic acid visualization with UCSF Chimera   总被引:2,自引:1,他引:1  
With the increase in the number of large, 3D, high-resolution nucleic acid structures, particularly of the 30S and 50S ribosomal subunits and the intact bacterial ribosome, advancements in the visualization of nucleic acid structural features are essential. Large molecular structures are complicated and detailed, and one goal of visualization software is to allow the user to simplify the display of some features and accent others. We describe an extension to the UCSF Chimera molecular visualization system for the purpose of displaying and highlighting nucleic acid characteristics, including a new representation of sugar pucker, several options for abstraction of base geometries that emphasize stacking and base pairing, and an adaptation of the ribbon backbone to accommodate the nucleic acid backbone. Molecules are displayed and manipulated interactively, allowing the user to change the representations as desired for small molecules, proteins and nucleic acids. This software is available as part of the UCSF Chimera molecular visualization system and thus is integrated with a suite of existing tools for molecular graphics.  相似文献   

7.
With the decline in productivity of drug‐development efforts, novel approaches to rational drug design are being introduced and developed. Naturally occurring and synthetic peptides are emerging as novel promising compounds that can specifically and efficiently modulate signaling pathways in vitro and in vivo. We describe sequence‐based approaches that use peptides to mimic proteins in order to inhibit the interaction of the mimicked protein with its partners. We then discuss a structure‐based approach, in which protein‐peptide complex structures are used to rationally design and optimize peptidic inhibitors. We survey flexible peptide docking techniques and discuss current challenges and future directions in the rational design of peptidic inhibitors. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 505–513, 2009. This article was originally published online as an accepted preprint. The “Published Online”date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
Direct visualization of DNA and proteins allows researchers to investigate DNA-protein interactions with great detail. Much progress has been made in this area as a result of increasingly sensitive single-molecule fluorescence techniques. At the same time, methods that control the conformation of DNA molecules have been improving constantly. The combination of both techniques has appealed to researchers ever since single-molecule measurements have become possible and indeed first implementations of such combined approaches have proven useful in the study of several DNA-binding proteins in real time. Here, we describe the technical state-of-the-art of various integrated manipulation-and-visualization methods. We first discuss methods that allow only little control over the DNA conformation, such as DNA combing. We then describe DNA flow-stretching approaches that allow more control, and end with the full control on position and extension obtained by manipulating DNA with optical tweezers. The advantages and limitations of the various techniques are discussed, as well as several examples of applications to biophysical or biochemical questions. We conclude with an outlook describing potential future technical developments in combining fluorescence microscopy with DNA micromanipulation technology.  相似文献   

9.
10.
We survey aspects of directional sensing, i.e. how a cell interprets differences in the external concentration of a chemoattractant to guide its motion, from the perspective of systems biology. We focus on questions that need to be addressed using a combination of modelling and experimental approaches. After briefly summarising the ideas underlying recent modelling efforts, we discuss a variety of experimental questions which are motivated by these models. Some of these questions focus on basic features of the chemotactic response, without involving much biochemistry, while others focus on filling some of the gaps in the biochemistry, which have been brought to light by the models. The emphasis is on systematic quantitative experiments that will unambiguously resolve many of these issues. Finally, we describe some current challenges for theoretical modelling and survey some of the theoretical tools and approaches employed to model the chemotaxis pathways.  相似文献   

11.
Chromatin conformation,localization,and dynamics are crucial regulators of cellular behaviors. Although fluorescence in situ hybridization-based techniques have been widely utilized for investigating chromatin architectures in healthy and diseased states,the requirement for cell fix-ation precludes the comprehensive dynamic analysis necessary to fully understand chromatin activ-ities. This has spurred the development and application of a variety of imaging methodologies for visualizing single chromosomal loci in the native cellular context. In this review,we describe currently-available approaches for imaging single genomic loci in cells,with special focus on clus-tered regularly interspaced short palindromic repeats (CRISPR)-based imaging approaches. In addition,we discuss some of the challenges that limit the application of CRISPR-based genomic imaging approaches,and potential solutions to address these challenges. We anticipate that,with continued refinement of CRISPR-based imaging techniques,significant understanding can be gained to help decipher chromatin activities and their relevance to cellular physiology and pathogenesis.  相似文献   

12.
Identifying ecological patterns across broad spatial and temporal extents requires novel approaches and methods for acquiring, integrating and modeling massive quantities of diverse data. For example, a growing number of research projects engage continent-wide networks of volunteers ('citizen-scientists') to collect species occurrence data. Although these data are information rich, they present numerous challenges in project design, implementation and analysis, which include: developing data collection tools that maximize data quantity while maintaining high standards of data quality, and applying new analytical and visualization techniques that can accurately reveal patterns in these data. Here, we describe how advances in data-intensive science provide accurate estimates in species distributions at continental scales by identifying complex environmental associations.  相似文献   

13.
All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.  相似文献   

14.

Background

Understanding living systems is crucial for curing diseases. To achieve this task we have to understand biological networks based on protein-protein interactions. Bioinformatics has come up with a great amount of databases and tools that support analysts in exploring protein-protein interactions on an integrated level for knowledge discovery. They provide predictions and correlations, indicate possibilities for future experimental research and fill the gaps to complete the picture of biochemical processes. There are numerous and huge databases of protein-protein interactions used to gain insights into answering some of the many questions of systems biology. Many computational resources integrate interaction data with additional information on molecular background. However, the vast number of diverse Bioinformatics resources poses an obstacle to the goal of understanding. We present a survey of databases that enable the visual analysis of protein networks.

Results

We selected M =10 out of N =53 resources supporting visualization, and we tested against the following set of criteria: interoperability, data integration, quantity of possible interactions, data visualization quality and data coverage. The study reveals differences in usability, visualization features and quality as well as the quantity of interactions. StringDB is the recommended first choice. CPDB presents a comprehensive dataset and IntAct lets the user change the network layout. A comprehensive comparison table is available via web. The supplementary table can be accessed on http://tinyurl.com/PPI-DB-Comparison-2015.

Conclusions

Only some web resources featuring graph visualization can be successfully applied to interactive visual analysis of protein-protein interaction. Study results underline the necessity for further enhancements of visualization integration in biochemical analysis tools. Identified challenges are data comprehensiveness, confidence, interactive feature and visualization maturing.  相似文献   

15.
The three-dimensional organisation of the genome modulates biological processes and is, in turn, transformed by the activity in the nucleus. Not surprisingly, understanding how the genome operates requires uncovering the fundamental biophysical and molecular mechanisms that establish and regulate its organisation. Genome organisation starts with the formation of chromatin: a polymer of nucleoprotein complexes, termed nucleosomes, that carry variable chemical signatures according to their biological context. The physicochemical heterogeneity of chromatin, the stochastic organisation it fosters, and the multiscale nature of genome organisation pose great technical challenges. Excitingly, advances in imaging and molecular biology techniques are addressing chromatin organisation at increasing resolutions. In tandem, computer models are testing and postulating hypotheses, interpreting the experimental data, and linking molecular properties of nucleosomes to the mesoscale organisation of chromatin. We discuss how coarse-grained models at varying resolutions are expanding our mechanistic understanding of chromatin organisation, and the challenges still remaining in the field.  相似文献   

16.
Crypt dynamics and colorectal cancer: advances in mathematical modelling   总被引:5,自引:0,他引:5  
Mathematical modelling forms a key component of systems biology, offering insights that complement and stimulate experimental studies. In this review, we illustrate the role of theoretical models in elucidating the mechanisms involved in normal intestinal crypt dynamics and colorectal cancer. We discuss a range of modelling approaches, including models that describe cell proliferation, migration, differentiation, crypt fission, genetic instability, APC inactivation and tumour heterogeneity. We focus on the model assumptions, limitations and applications, rather than on the technical details. We also present a new stochastic model for stem-cell dynamics, which predicts that, on average, APC inactivation occurs more quickly in the stem-cell pool in the absence of symmetric cell division. This suggests that natural niche succession may protect stem cells against malignant transformation in the gut. Finally, we explain how we aim to gain further understanding of the crypt system and of colorectal carcinogenesis with the aid of multiscale models that cover all levels of organization from the molecular to the whole organ.  相似文献   

17.
Fish are both consumers and prey, and as such part of a dynamic trophic network. Measuring how they are trophically linked, both directly and indirectly, to other species is vital to comprehend the mechanisms driving alterations in fish communities in space and time. Moreover, this knowledge also helps to understand how fish communities respond to environmental change and delivers important information for implementing management of fish stocks. DNA-based methods have significantly widened our ability to assess trophic interactions in both marine and freshwater systems and they possess a range of advantages over other approaches in diet analysis. In this review we provide an overview of different DNA-based methods that have been used to assess trophic interactions of fish as consumers and prey. We consider the practicalities and limitations, and emphasize critical aspects when analysing molecular derived trophic data. We exemplify how molecular techniques have been employed to unravel food web interactions involving fish as consumers and prey. In addition to the exciting opportunities DNA-based approaches offer, we identify current challenges and future prospects for assessing fish food webs where DNA-based approaches will play an important role.  相似文献   

18.
Membrane proteins are key molecules in the cell and are important targets for drug development. Much effort has, therefore, been directed towards research of this group of proteins, but their hydrophobic nature can make working with them challenging. Here we discuss methodologies used in the study of the membrane proteome, specifically discussing approaches that circumvent technical issues specific to the membrane. In addition, we review several techniques used for visualization, qualification, quantitation and localization of membrane proteins. The combination of the techniques we describe holds great promise to allow full characterization of the membrane proteome and to map the dynamic changes within it essential for cellular function.  相似文献   

19.
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High‐throughput sequencing (“HTS”) platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed “environmental DNA” or “eDNA”). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called “eDNA metabarcoding” and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号