首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deregulation of miR-101 and DNMT3a has been implicated in the pathogenesis of multiple tumor types, but whether and how miR-101 silencing and DNMT3a overexpression contribute to lung tumorigenesis remain elusive. Here we show that miR-101 downregulation associates with DNMT3a overexpression in lung cancer cell lines and patient tissues. Ectopic miR-101 expression remarkably abrogated the DNMT3a 3′-UTR luciferase activity corresponding to the miR-101 binding site and caused an attenuated expression of endogenous DNMT3a, which led to a reduction of global DNA methylation and the re-expression of tumor suppressor CDH1 via its promoter DNA hypomethylation. Functionally, restoration of miR-101 expression suppressed lung cancer cell clonability and migration, which recapitulated the DNMT3a knockdown effects. Interestingly, miR-101 synergized with decitabine to downregulate DNMT3a and to reduce DNA methylation. Importantly, ectopic miR-101 expression was sufficient to trigger in vivo lung tumor regression and the blockage of metastasis. Consistent with these phenotypes, examination of xenograft tumors disclosed an increase of miR-101, a decrease of DNMT3a and the subsequent DNA demethylation. These findings support that the loss or suppression of miR-101 function accelerates lung tumorigenesis through DNMT3a-dependent DNA methylation, and suggest that miR-101-DNMT3a axis may have therapeutic value in treating refractory lung cancer.Owing to a high propensity for recurrence and a high rate of metastasis at the advanced stages,1, 2, 3 lung cancer remains the leading cause of cancer-related mortality. DNA methylation is a major epigenetic rule controlling chromosomal stability and gene expression.4, 5 It is under control of DNA methyltransferases (DNMTs), whose overexpression in lung cancer cells predicts worse outcomes.6, 7 It is postulated that DNMT overexpression induces DNA hypermethylation and silencing of tumor suppressor genes (TSGs), leading to an aggressive lung cancer. Indeed, enforced expression of DNMT1 or DNMT3a increases DNA methylation, while the abolition of DNMT expression by genetic depletion, microRNAs (miRs) or small molecules reduces genome-wide and gene-specific DNA methylation and restores TSG expression.8, 9, 10, 11, 12, 13 As TSGs are the master controllers for cell multiplicity and their silencing predicts poor prognosis,14, 15 TSG re-expression via promoter DNA hypomethylation inhibits cell proliferation and induces cell differentiation.13, 16 Thus, DNMT gene abundance could serve as a target for anticancer therapy, but how DNMT upregulation occurs in lung cancer is incompletely understood.MiRs are small non-coding RNAs that crucially regulate target gene expression. Up to 30% of all protein-coding genes are predicted to be targeted by miRs,17, 18 supporting the key roles of miRs in controlling cell fate.19, 20, 21, 22 Research is showing that certain miRs are frequently dysregulated in cancers, including lung cancer.7, 23, 24 As miR targets can promote or inhibit cancer cell expansion, miRs have huge potential for acting as bona fide oncogenes (i.e., miR-21) or TSGs (i.e., miR-29b).7, 25 We and others demonstrated that the levels of DNMT1 or DNMT3a or DNMT3b are regulated by miR-29b, miR-148, miR-152 or miR-30c,7, 13, 26, 27 and overexpression of these miRs results in DNA hypomethylation and TSG reactivation with the concurrent blockage of cancer cell proliferation.7, 13 These findings underscore the importance of miRs as epigenetic modulators and highlight their therapeutic applications.MiR-101 is frequently silenced in human cancers28, 29, 30, 31 and, importantly, exhibits antitumorigenic properties when overexpressed. Mechanistically, miR-101 inactivation by genomic loss causes the overexpression of EZH2, a histone methyltransferase, via 3′-UTR targeting, which is followed by histone hypermethylation and aggressive tumorigenesis.29, 30, 32 However, whether and how miR-101 silencing contributes to DNA hypermethylation patterning in lung cancer is unclear. In this study, we explore the role of miR-101 in regulating DNMT3a expression and the impacts of miR-101-DNMT3a nexus on lung cancer pathogenesis. We showed that the expression of miR-101 and DNMT3a was negatively correlated in lung cancer. We presented evidence that ectopic miR-101 expression decreased DNMT3a levels, reduced global DNA methylation and upregulated CDH1 via its promoter DNA demethylation. The biological significance of miR-101-mediated DNA hypomethylation and CDH1 re-expression was evident by its inhibition of lung tumor cell growth in vitro and in vivo. Thus, our findings mechanistically and functionally link miR-101 silencing to DNA hypermethylation in lung cancer cells.  相似文献   

2.
3.
X Li  N Du  Q Zhang  J Li  X Chen  X Liu  Y Hu  W Qin  N Shen  C Xu  Z Fang  Y Wei  R Wang  Z Du  Y Zhang  Y Lu 《Cell death & disease》2014,5(10):e1479
Diabetic cardiomyopathy is a common cardiac condition in patients with diabetes mellitus, which can result in cardiac hypertrophy and subsequent heart failure, associated with pyroptosis, the pro-inflammatory programmed cell death. MicroRNAs (miRNAs), small endogenous non-coding RNAs, have been shown to be involved in diabetic cardiomyopathy. However, whether miRNAs regulate pyroptosis in diabetic cardiomyopathy remains unknown. Our study revealed that mir-30d expression was substantially increased in streptozotocin (STZ)-induced diabetic rats and in high-glucose-treated cardiomyocytes as well. Upregulation of mir-30d promoted cardiomyocyte pyroptosis in diabetic cardiomyopathy; conversely, knockdown of mir-30d attenuated it. In an effort to understand the signaling mechanisms underlying the pro-pyroptotic property of mir-30d, we found that forced expression of mir-30d upregulated caspase-1 and pro-inflammatory cytokines IL-1β and IL-18. Moreover, mir-30d directly repressed foxo3a expression and its downstream protein, apoptosis repressor with caspase recruitment domain (ARC). Furthermore, silencing ARC by siRNA mimicked the action of mir-30d: upregulating caspase-1 and inducing pyroptosis. These findings promoted us to propose a new signaling pathway leading to cardiomyocyte pyroptosis under hyperglycemic conditions: mir-30d↑→foxo3a↓→ ARC↓→caspase-1↑→IL-1β, IL-18↑→pyroptosis↑. Therefore, mir-30d may be a promising therapeutic target for the management of diabetic cardiomyopathy.Diabetic cardiomyopathy is a leading cardiovascular complication occurring in approximately 60% of patients with well-controlled diabetes.1 It frequently occurs when systolic function is impaired in the presence of diastolic dysfunction, independent of any vascular diseases or hypertension.1 Accumulating evidence has implicated hyperglycemia, lipotoxicity and mitochondrial uncoupling as contributors to cardiac inflammation, which has an essential role in the onset and development of diabetic cardiomyopathy.2, 3, 4MicroRNAs (miRNAs) are endogenous, small non-coding RNAs of approximately 19–22 nucleotides in length that anneal inexactly to complementary sequences in the 3′-untranslated regions (3′-UTRs) of target mRNAs to either facilitate their degradation or repress the translation process.5 Numerous studies have shown that miRNAs are involved in a wide variety of biological processes, including cell proliferation, differentiation, metastasis, apoptosis and immune responses,6,7 and also function as prognostic markers in the development and progression of cardiovascular diseases by targeting pertinent genes.4,5,8, 9, 10Pyroptosis is pro-inflammatory programmed cell death.11,12 It has biochemical and morphological characteristics of necrosis and apoptosis, but unlike apoptosis or necrosis, pyroptosis results in the release of cytokines that activate pro-inflammatory immune cell mediators.13 Caspase-1 is activated during pyroptosis by a large supramolecular complex known as the pyroptosome14 and subsequently processes the proforms of interleukin (IL)-1β and IL-18, the inflammatory cytokines, into their active forms.15,16 However, few studies have focused on the participation of miRNAs in pyroptosis in diabetic cardiomyopathy.The aim of this study was to elucidate the essential role of miRNAs in regulating diabetic cardiomyopathy and the underlying mechanisms. In this study, we demonstrated that mir-30d promoted cardiomyocyte pyroptosis by directly targeting Forkhead box O3 (Foxo3a), a crucial regulator of diverse cellular activities, such as cell cycle arrest, oxidative scavenging, cell proliferation, survival and death.17,18 The downstream protein, apoptosis repressor with caspase recruitment domain (ARC), which antagonizes both the intrinsic and the extrinsic pathways of cell death,19, 20, 21 was subsequently inhibited. Taken together, we verified that mir-30d has a crucial role in the pathogenesis of cardiomyocyte pyroptosis, suggesting that mir-30d may be a potential therapeutic target in the treatment of diabetic cardiomyopathy.  相似文献   

4.
5.
6.
7.
Identification of target cells in lung tumorigenesis and characterization of the signals that control their behavior is an important step toward improving early cancer diagnosis and predicting tumor behavior. We identified a population of cells in the adult lung that bear the EpCAM+CD104+CD49f+CD44+CD24loSCA1+ phenotype and can be clonally expanded in culture, consistent with the properties of early progenitor cells. We show that these cells, rather than being restricted to one tumor type, can give rise to several different types of cancer, including adenocarcinoma and squamous cell carcinoma. We further demonstrate that these cells can be converted from one cancer type to the other, and this plasticity is determined by their responsiveness to transforming growth factor (TGF)-beta signaling. Our data establish a mechanistic link between TGF-beta signaling and SOX2 expression, and identify the TGF-beta/SMAD/SOX2 signaling network as a key regulator of lineage commitment and differentiation of lung cancer cells.Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. Lung cancers are divided into two major categories: non-small-cell lung cancer (NSCLC) and small-cell lung cancer. NSCLC accounts for ∼80% of all lung cancers and is divided further into adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large-cell lung carcinoma. Of the four major types of lung cancer, Kras mutations are present in about 30–50% of ADC, a smaller percentage of SCC (5–7%) and <1% of SCLC.1, 2 Mutations of the p53 gene are common in all types of lung cancer and range from ∼30% in ADC to more than 70% in SCC and SCLC.3 Other alterations occur at lower frequencies in NSCLC, including mutations in EGFR (15%), EML4-ALK (4%), ERBB2 (2%), AKT1, BRAF, MAP2K1 and MET.2, 4 Previous efforts in comprehensive characterization of lung cancer include copy number and gene expression profiling, targeted sequencing of candidate genes and large-scale genome sequencing of tumor samples.5, 6, 7, 8, 9 Significant progress has also been made in developing mouse models of lung carcinogenesis.10, 11 The unifying theme underlying these studies is that there exists a permissive cellular context for each specific oncogenic lesion, and that only certain types of cells are capable of cancer initiation.12, 13, 14The lung consists of three anatomically distinct regions such as trachea, bronchioles and alveoli, each maintained by a distinct population of progenitor cells, that is, basal, Clara and alveolar type 2 (AT2) cells, respectively.15, 16 Previous work has focused upon AT2 cells, Clara cells (or variant Clara cells with low CC10 expression) and the putative bronchioalveolar stem cells (BASCs) as potential cells of origin for lung ADC.12, 14, 17 However, to date, only AT2 cells have been conclusively identified as having the potential to be the cells of origin for lung ADC.14, 17 This raises the question of whether Clara cells, their restricted subpopulations or the newly identified candidate stem cells, termed distal airway stem cells,18 alveolar epithelial progenitor cells (AECs)19, 20 and BASCs,12 also have the capacity to give rise to ADC. Current knowledge on the cellular origins of SCC, the second most common type of lung cancer, lags behind that of ADC, partly owing to the fact that squamous cells are not normally present in the respiratory epithelium, and therefore arise through either metaplasia (conversions between stem cell states) or trans-differentiation (conversions between differentiated cells).21, 22 Whether the mechanisms of SCC causation vary by cell type, their responses to various cells signaling cascades (e.g., transforming growth factor (TGF)-beta, WNT, etc.), or other tumor characteristics is unknown at present.To address the questions of cell type of origin and signal cascades that control their behavior, we developed in vitro culture conditions that favor the growth of lung epithelial cells with stem cell-like properties. We describe a population of cells isolated from the adult lung that, rather than being restricted to one tumor type, can give rise to several different types of cancer, including ADC and SCC. We also show that these cells can be converted from one cancer type to the other, and this plasticity is largely, if not solely, determined by TGF-beta signaling.  相似文献   

8.
9.
10.
11.
12.
13.
Tyrosine kinase inhibitors (TKIs) have shown strong activity against non-small-cell lung cancer (NSCLC) patients harboring activating epidermal growth factor receptor (EGFR) mutations. However, a fraction of EGFR wild-type (WT) patients may have an improvement in terms of response rate and progression-free survival when treated with erlotinib, suggesting that factors other than EGFR mutation may lead to TKI sensitivity. However, at present, no sufficiently robust clinical or biological parameters have been defined to identify WT-EGFR patients with greater chances of response. Therapeutics validation has necessarily to focus on lung cancer stem cells (LCSCs) as they are more difficult to eradicate and represent the tumor-maintaining cell population. Here, we investigated erlotinib response of lung CSCs with WT-EGFR and identified EGFR phosphorylation at tyrosine1068 (EGFRtyr1068) as a powerful biomarker associated with erlotinib sensitivity both in vitro and in preclinical CSC-generated xenografts. In contrast to the preferential cytotoxicity of chemotherapy against the more differentiated cells, in EGFRtyr1068 cells, erlotinib was even more active against the LCSCs compared with their differentiated counterpart, acquiring potential value as CSC-directed therapeutics in the context of WT-EGFR lung cancer. Although tumor growth was inhibited to a similar extent during erlotinib or chemotherapy administration to responsive tumors, erlotinib proved superior to chemotherapy in terms of higher tolerability and reduced tumor aggressiveness after treatment suspension, substantiating the possibility of preferential LCSC targeting, both in adenocarcinoma (ADC) and squamous cell carcinoma (SCC) tumors. We conclude that EGFRtyr1068 may represent a potential candidate biomarker predicting erlotinib response at CSC-level in EGFR-WT lung cancer patients. Finally, besides its invariable association with erlotinib sensitivity in EGFR-WT lung CSCs, EGFRtyr1068 was associated with EGFR-sensitizing mutations in cell lines and patient tumors, with relevant diagnostic, clinical and therapeutic implications.Non-small-cell lung cancer (NSCLC) accounts for ∼80% of lung cancer subtypes and is the leading cause of cancer-related death worldwide.1 In recent years, molecular characterization of NSCLC has reached an unprecedented detail and has allowed segregating NSCLC into discrete molecular subgroups, characterized by specific oncogenic drivers, such as epidermal growth factor receptor (EGFR), BRAF, KRAS, epidermal growth factor receptor 2 (HER2) mutations, MET amplification and anaplastic lymphoma kinase gene rearrangements (ALK).2, 3 Consequently, the understanding of NSCLC biology has brought two new classes of targeted agents into the clinical setting: EGFR tyrosine kinase inhibitors (TKIs) and ALK inhibitors.4, 5 In particular, clinical trials have shown that NSCLC patients whose tumors harbor sensitizing EGFR mutations significantly benefit from the upfront use of an EGFR TKI, rather than conventional chemotherapy.6, 7, 8, 9, 10, 11 Although licensed for clinical use in chemotherapy-pretreated patients, regardless of EGFR mutational status, the EGFR TKI erlotinib has limited efficacy when compared with standard chemotherapy in patients with WT-EGFR NSCLC.12, 13, 14However, a fraction of patients on erlotinib treatment may achieve clinically significant objective responses and prolonged disease control, despite the lack of detectable EGFR mutations.15 Nevertheless, no biomarker investigated so far was felt sufficiently robust to select for the use of erlotinib in the maintenance or refractory setting.16 Thus, it would be crucial to identify molecular predictors of TKI sensitivity in EGFR wild-type (WT) tumors in order to prospectively select the subgroup of patients who may benefit from erlotinib therapy. Moreover, EGFR TKIs have also shown a modest therapeutic effect in lung squamous cell carcinoma (SCC), where EGFR mutations are very rare and patients have limited therapeutic options in the maintenance and relapsed settings.16, 17, 18, 19, 20Even more importantly, in order to obtain meaningful clinical responses it is crucial to effectively target the population of cells that are able to escape treatment and maintain the growth of a resistant tumor.21 Cancer stem cells (CSCs) have been in fact identified within most solid tumors, including lung tumors, and are associated with increased resistance to therapies.22, 23, 24, 25, 26, 27, 28, 29, 30 Thus, the efficacy of innovative therapeutic strategies should be validated against these more aggressive, tumor-maintaining cells.23, 27, 31 Importantly, TKI response has never been determined at the level of the tumor-maintaining CSCs. Thus, we investigated erlotinib response of EGFR mutation-negative lung cancer stem cells (LCSCs) and LCSC-based xenografts with the attempt to evaluate their sensitivity to the drug and correlate it with their molecular pattern in order to identify potential biomarkers predictive of erlotinib response in a WT-EGFR context at the CSC level.  相似文献   

14.
Chemoresistance in cancer has previously been attributed to gene mutations or deficiencies. Bax or p53 deficiency can lead to resistance to cancer drugs. We aimed to find an agent to overcome chemoresistance induced by Bax or p53 deficiency. Here, we used immunoblot, flow-cytometry analysis, gene interference, etc. to show that genistein, a major component of isoflavone that is known to have anti-tumor activities in a variety of models, induces Bax/p53-independent cell death in HCT116 Bax knockout (KO), HCT116 p53 KO, DU145 Bax KO, or DU145 p53 KO cells that express wild-type (WT) Bak. Bak knockdown (KD) only partially attenuated genistein-induced apoptosis. Further results indicated that the release of AIF and endoG also contributes to genistein-induced cell death, which is independent of Bak activation. Conversely, AIF and endoG knockdown had little effect on Bak activation. Knockdown of either AIF or endoG alone could not efficiently inhibit apoptosis in cells treated with genistein, whereas an AIF, endoG, and Bak triple knockdown almost completely attenuated apoptosis. Next, we found that the Akt-Bid pathway mediates Bak-induced caspase-dependent and AIF- and endoG-induced caspase-independent cell death. Moreover, downstream caspase-3 could enhance the release of AIF and endoG as well as Bak activation via a positive feedback loop. Taken together, our data elaborate the detailed mechanisms of genistein in Bax/p53-independent apoptosis and indicate that caspase-3-enhanced Bid activation initiates the cell death pathway. Our results also suggest that genistein may be an effective agent for overcoming chemoresistance in cancers with dysfunctional Bax and p53.Mammalian cell death proceeds through a highly regulated program called apoptosis that is highly dependent on the mitochondria.1 Mitochondrial outer membrane (MOM) multiple apoptotic stresses permeabilize the MOM, resulting in the release of apoptogenic factors including cytochrome c, Smac, AIF, and endoG.2, 3, 4 Released cytochrome c activates Apaf-1, which assists in caspase activation. Then, activated caspases cleave cellular proteins and contribute to the morphological and biochemical changes associated with apoptosis. Bcl-2 family proteins control a crucial apoptosis checkpoint in the mitochondria.2, 5, 6, 7 Multidomain proapoptotic Bax and Bak are essential effectors responsible for the permeabilization of the MOM, whereas anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1 preserve mitochondrial integrity and prevent cytochrome c efflux triggered by apoptotic stimuli. The third Bcl-2 subfamily of proteins, BH3-only molecules (BH3s), promotes apoptosis by either activating Bax/Bak or inactivating Bcl-2/Bcl-xL/Mcl-1.8, 9, 10, 11, 12 Upon apoptosis, the ‘activator'' BH3s, including truncated Bid (tBid), Bim, and Puma, activate Bax and Bak to mediate cytochrome c efflux, leading to caspase activation.8, 11, 12 Conversely, antiapoptotic Bcl-2, Bcl-xL, and Mcl-1 sequester activator BH3s into inert complexes, which prevents Bax/Bak activation.8, 9 Although it has been proposed that Bax and Bak activation occurs by default as long as all of the anti-apoptotic Bcl-2 proteins are neutralized by BH3s,13 liposome studies clearly recapitulate the direct activation model in which tBid or BH3 domain peptides derived from Bid or Bim induce Bax or Bak oligomerization and membrane permeabilization.12, 14, 15Numerous studies have demonstrated a critical role for Bax in determining tumor cell sensitivity to drug induction and in tumor development. Bax has been reported to be mutated in colon16, 17 and prostate cancers,18, 19 contributing to tumor cell survival and promoting clonal expansion. Bax has been shown to restrain tumorigenesis20 and is necessary for tBid-induced cancer cell apoptosis.21 Loss of Bax has been reported to promote tumor development in animal models.22 Bax knockout (KO) renders HCT116 cells resistant to a series of apoptosis inducers.23, 24, 25 p53 has been reported to be a tumor suppressor,26 and its mutant can cause chemoresistance in cancer cells.27, 28, 29 Moreover, p53 is often inactivated in solid tumors via deletions or point mutations.30, 31 Thus, it is necessary to find an efficient approach or agent to overcome chemoresistance caused by Bax and/or p53 mutants.Few studies have focused on the role of Bak in tumor cell apoptosis and cancer development. Bak mutations have only been shown in gastric and colon cancer cells.32 Some studies have revealed that Bak is a determinant of cancer cell apoptosis.33, 34 Some studies have even demonstrated that Bak renders Bax KO cells sensitive to drug induction.33, 35 In this study, we are the first group to show that tBid induces Bak activation and the release of AIF and endoG in colon cancer cells, which causes cellular apoptosis independent of Bax/p53. We also found that caspase-3 is activated in apoptosis. Interestingly, downstream caspase-3 can strengthen Bak activation and the release of AIF and endoG during apoptosis via a feedback loop. Furthermore, we reveal that Akt upregulates apoptosis progression. These results will help us to better understand the function of mitochondrial apoptotic protein members in apoptosis and cancer therapies. Furthermore, our experiments may provide a theoretical basis for overcoming chemoresistance in cancer cells.  相似文献   

15.
16.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

17.
18.
19.
Spontaneous neoplasms in Mongolian gerbils have an incidence of 20% to 26.8%, but osteosarcomas occur at a much lower rate. Here we report a 1-y-old Mongolian gerbil with a spontaneous osteosarcoma at the level of the proximal tibia, with metastases to the pectoral muscles and lungs. Grossly, the tibial mass obliterated the tibia and adjacent muscles, and an axillary mass with a bloody, cavitary center expanded the pectoral muscles. Microscopically, the tibial mass was an infiltrative, osteoblastic mesenchymal neoplasm, and the axillary mass was an anaplastic mesenchymal neoplasm with hemorrhage. The lung contained multiple metastatic foci. Immunohistochemistry for osteonectin was strongly positive in the tibial, axillary, and pulmonary metastases. Although osteosarcoma is the most common primary malignant bone neoplasm that occurs spontaneously in all laboratory and domestic animal species and humans, it arises less frequently than does other neoplasms. The current case of spontaneous osteoblastic osteosarcoma of the proximal tibia and metastases to the pectoral muscles and lung in a Mongolian gerbil is similar in presentation, histology, and predilection site of both osteoblastic and telangiectatic osteosarcomas in humans. In addition, this case is an unusual manifestation of osteosarcoma in the appendicular skeleton of a Mongolian gerbil.Mongolian gerbils are used frequently in biologic research,1,2,4,9,10,12-14 particularly in oncogenic studies and filariasis research studying Brugia malayi.2 There have been several reports1,6,10,11,13-15 of spontaneous neoplasms, particularly in gerbils 2 y of age and older, typically occurring with the highest incidences in the skin, reproductive tract, and adrenal glands; however, neoplasms have also been reported in the thyroid, thymus, liver, kidney, pancreas, and bone.1,6,10,11,13-15 The incidence of spontaneous neoplasms occurring in the subfamily Gerbillinae ranges from 20% to 26.8%,1,6,10,11,13-15 depending on the study, age, and sex of the animals.With a lower incidence than those reported for other neoplasms, osteosarcomas in gerbils have been described in the ramus of the mandible and as an extraskeletal mass throughout the peritoneum.10,11 The usual age of onset for osteosarcomas in Mongolian gerbils is approximately 3 y (36 to 39 mo); however, no tumor type has been reported at less than 2 y of age in this species.10,11 Here we report a spontaneous osteosarcoma that occurred at the level of the proximal tibia, with metastases to the pectoral muscles and lung, in a 1-y-old Mongolian gerbil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号