首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells and organisms have a wide range of mechanisms to defend against infection by viruses and other mobile genetic elements (MGE). Type III CRISPR systems detect foreign RNA and typically generate cyclic oligoadenylate (cOA) second messengers that bind to ancillary proteins with CARF (CRISPR associated Rossman fold) domains. This results in the activation of fused effector domains for antiviral defence. The best characterised CARF family effectors are the Csm6/Csx1 ribonucleases and DNA nickase Can1. Here we investigate a widely distributed CARF family effector with a nuclease domain, which we name Can2 (CRISPR ancillary nuclease 2). Can2 is activated by cyclic tetra-adenylate (cA4) and displays both DNase and RNase activity, providing effective immunity against plasmid transformation and bacteriophage infection in Escherichia coli. The structure of Can2 in complex with cA4 suggests a mechanism for the cA4-mediated activation of the enzyme, whereby an active site cleft is exposed on binding the activator. These findings extend our understanding of type III CRISPR cOA signalling and effector function.  相似文献   

2.
Type III CRISPR systems detect invading RNA, resulting in the activation of the enzymatic Cas10 subunit. The Cas10 cyclase domain generates cyclic oligoadenylate (cOA) second messenger molecules, activating a variety of effector nucleases that degrade nucleic acids to provide immunity. The prophage-encoded Vibrio metoecus type III-B (VmeCmr) locus is uncharacterised, lacks the HD nuclease domain in Cas10 and encodes a NucC DNA nuclease effector that is also found associated with Cyclic-oligonucleotide-based anti-phage signalling systems (CBASS). Here we demonstrate that VmeCmr is activated by target RNA binding, generating cyclic-triadenylate (cA3) to stimulate a robust NucC-mediated DNase activity. The specificity of VmeCmr is probed, revealing the importance of specific nucleotide positions in segment 1 of the RNA duplex and the protospacer flanking sequence (PFS). We harness this programmable system to demonstrate the potential for a highly specific and sensitive assay for detection of the SARS-CoV-2 virus RNA with a limit of detection (LoD) of 2 fM using a commercial plate reader without any extrinsic amplification step. The sensitivity is highly dependent on the guide RNA used, suggesting that target RNA secondary structure plays an important role that may also be relevant in vivo.  相似文献   

3.
4.
Type III CRISPR-Cas effector systems detect foreign RNA triggering DNA and RNA cleavage and synthesizing cyclic oligoadenylate molecules (cA) in their Cas10 subunit. cAs act as a second messenger activating auxiliary nucleases, leading to an indiscriminate RNA degradation that can end in cell dormancy or death. Standalone ring nucleases are CRISPR ancillary proteins which downregulate the strong immune response of Type III systems by degrading cA. These enzymes contain a CRISPR-associated Rossman-fold (CARF) domain, which binds and cleaves the cA molecule. Here, we present the structures of the standalone ring nuclease from Sulfolobus islandicus (Sis) 0811 in its apo and post-catalytic states. This enzyme is composed by a N-terminal CARF and a C-terminal wHTH domain. Sis0811 presents a phosphodiester hydrolysis metal-independent mechanism, which cleaves cA4 rings to generate linear adenylate species, thus reducing the levels of the second messenger and switching off the cell antiviral state. The structural and biochemical analysis revealed the coupling of a cork-screw conformational change with the positioning of key catalytic residues to proceed with cA4 phosphodiester hydrolysis in a non-concerted manner.  相似文献   

5.
The rnlAB toxin-antitoxin operon from Escherichia coli functions as an anti-phage defense system. RnlA was identified as a member of the HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding domain) superfamily of ribonucleases. The activity of the toxin RnlA requires tight regulation by the antitoxin RnlB, the mechanism of which remains unknown. Here we show that RnlA exists in an equilibrium between two different homodimer states: an inactive resting state and an active canonical HEPN dimer. Mutants interfering with the transition between states show that canonical HEPN dimerization via the highly conserved RX4-6H motif is required for activity. The antitoxin RnlB binds the canonical HEPN dimer conformation, inhibiting RnlA by blocking access to its active site. Single-alanine substitutions mutants of the highly conserved R255, E258, R318 and H323 show that these residues are involved in catalysis and substrate binding and locate the catalytic site near the dimer interface of the canonical HEPN dimer rather than in a groove located between the HEPN domain and the preceding TBP-like domain. Overall, these findings elucidate the structural basis of the activity and inhibition of RnlA and highlight the crucial role of conformational heterogeneity in protein function.  相似文献   

6.
7.
8.
9.
The human oral cavity has an indigenous microbiota known to include a robust community of viruses. Very little is known about how oral viruses are spread throughout the environment or to which viruses individuals are exposed. We sought to determine whether shared living environment is associated with the composition of human oral viral communities by examining the saliva of 21 human subjects; 11 subjects from different households and 10 unrelated subjects comprising 4 separate households. Although there were many viral homologues shared among all subjects studied, there were significant patterns of shared homologues in three of the four households that suggest shared living environment affects viral community composition. We also examined CRISPR (clustered regularly interspaced short palindromic repeat) loci, which are involved in acquired bacterial and archaeal resistance against invading viruses by acquiring short viral sequences. We analyzed 2 065 246 CRISPR spacers from 5 separate repeat motifs found in oral bacterial species of Gemella, Veillonella, Leptotrichia and Streptococcus to determine whether individuals from shared living environments may have been exposed to similar viruses. A significant proportion of CRISPR spacers were shared within subjects from the same households, suggesting either shared ancestry of their oral microbiota or similar viral exposures. Many CRISPR spacers matched virome sequences from different subjects, but no pattern specific to any household was found. Our data on viromes and CRISPR content indicate that shared living environment may have a significant role in determining the ecology of human oral viruses.  相似文献   

10.
Prokaryotic adaptive immune systems use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and CRISPR-associated (Cas) proteins for RNA-guided cleavage of foreign genetic elements. The focus of this review, Type VI CRISPR–Cas systems, contain a single protein, Cas13 (formerly C2c2) that when assembled with a CRISPR RNA (crRNA) forms a crRNA-guided RNA-targeting effector complex. Type VI CRISPR–Cas systems can be divided into four subtypes (A–D) based on Cas13 phylogeny. All Cas13 proteins studied to date possess two enzymatically distinct ribonuclease activities that are required for optimal interference. One RNase is responsible for pre-crRNA processing to form mature Type VI interference complexes, while the other RNase activity provided by the two Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, is required for degradation of target-RNA during viral interference. In this review, I will compare and contrast what is known about the molecular architecture and behavior of Type VI (A–D) CRISPR–Cas13 interference complexes, how this allows them to carry out their RNA-targeting function, how Type VI accessory proteins are able to modulate Cas13 activity, and how together all of these features have led to the rapid development of a range of RNA-targeting applications. Throughout I will also discuss some of the outstanding questions regarding Cas13's molecular behavior, and its role in bacterial adaptive immunity and RNA-targeting applications.  相似文献   

11.
Single-stranded DNA (ssDNA)-specific exonucleases (ssExos) are expected to be involved in a variety of DNA repair pathways corresponding to their cleavage polarities; however, the relationship between the cleavage polarity and the respective DNA repair pathways is only partially understood. To understand the cellular function of ssExos in DNA repair better, genes encoding ssExos were disrupted in Thermus thermophilus HB8 that seems to have only a single set of 5′–3′ and 3′–5′ ssExos unlike other model organisms. Disruption of the tthb178 gene, which was expected to encode a 3′–5′ ssExo, resulted in significant increase in the sensitivity to H2O2 and frequency of the spontaneous mutation rate, but scarcely affected the sensitivity to ultraviolet (UV) irradiation. In contrast, disruption of the recJ gene, which encodes a 5′–3′ ssExo, showed little effect on the sensitivity to H2O2, but caused increased sensitivity to UV irradiation. In vitro characterization revealed that TTHB178 possessed 3′–5′ ssExo activity that degraded ssDNAs containing deaminated and methylated bases, but not those containing oxidized bases or abasic sites. Consequently, we concluded that TTHB178 is a novel 3′–5′ ssExo that functions in various DNA repair systems in cooperation with or independently of RecJ. We named TTHB178 as T. thermophilus exonuclease I.  相似文献   

12.
13.
14.
CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B′) as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-B′ genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-B′, but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as “viritopes” to emphasize their critical role in viral immunity) were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities.  相似文献   

15.
The bacterial defense system CRISPR (clustered regularly interspaced short palindromic repeats) has been explored as a powerful tool to edit genomic elements. In this study, we test the potential of CRISPR Csy4 RNA endoribonuclease for targeting HIV-1. We fused human codon-optimized Csy4 endoribonuclease with VPR, a HIV-1 viral preintegration complex protein. An HIV-1 cell model was modified to allow quantitative detection of active virus production. We found that the trans-expressing VPR-Csy4 almost completely blocked viral infection in two target cell lines (SupT1, Ghost). In the MAGI cell assay, where the HIV-1 LTR β-galactosidase is expressed under the control of the tat gene from an integrated provirus, VPR-Csy4 significantly blocked the activity of the provirus-activated HIV-1 reporter. This proof-of-concept study demonstrates that Csy4 endoribonuclease is a promising tool that could be tailored further to target HIV-1.  相似文献   

16.
Prokaryotic CRISPR–Cas systems provide an RNA-guided mechanism for genome defense against mobile genetic elements such as viruses and plasmids. In type III-A CRISPR–Cas systems, the RNA-guided multisubunit Csm effector complex targets both single-stranded RNAs and double-stranded DNAs. In addition to the Csm complex, efficient anti-plasmid immunity mediated by type III-A systems also requires the CRISPR-associated protein Csm6. Here we report the crystal structure of Csm6 from Thermus thermophilus and show that the protein is a ssRNA-specific endoribonuclease. The structure reveals a dimeric architecture generated by interactions involving the N-terminal CARF and C-terminal HEPN domains. HEPN domain dimerization leads to the formation of a composite ribonuclease active site. Consistently, mutations of invariant active site residues impair catalytic activity in vitro. We further show that the ribonuclease activity of Csm6 is conserved across orthologs, suggesting that it plays an important functional role in CRISPR–Cas systems. The dimer interface of the CARF domains features a conserved electropositive pocket that may function as a ligand-binding site for allosteric control of ribonuclease activity. Altogether, our work suggests that Csm6 proteins provide an auxiliary RNA-targeting interference mechanism in type III-A CRISPR–Cas systems that operates in conjunction with the RNA- and DNA-targeting endonuclease activities of the Csm effector complex.  相似文献   

17.
A ribonuclease associated with purified vaccinia virus is able to degrade into 3S fragments the viral 8–12S mRNAs synthesized invitro. This RNase not detected on purified viral cores was shown to be located on the outer side of the viral envelope. When added to reaction mixture, a partially purified HeLa S3 cytosol fully inhibits the vaccinia virus associated RNase. Other cytosols from very common mammalian cell lines also contain RNase inhibitor and are of interest in order to prepare large amounts of undegraded vaccinia virus mRNAs.  相似文献   

18.
19.
The herpes simplex virus host shutoff RNase (VHS-RNase) is the major early block of host responses to infection. VHS-RNase is introduced into cells during infection and selectively degrades stable mRNAs made before infection and the normally short-lived AU-rich stress response mRNAs induced by sensors of innate immunity. Through its interactions with pUL47, another tegument protein, it spares from degradation viral mRNAs. Analyses of embedded motifs revealed that VHS-RNase contains a nuclear export signal (NES) but not a nuclear localization signal. To reconcile the potential nuclear localization with earlier studies showing that VHS-RNase degrades mRNAs in polyribosomes, we constructed a mutant in which NES was ablated. Comparison of the mutant and wild-type VHS-RNases revealed the following. (i) On infection, VHS-RNase is transported to the nucleus, but only the wild-type protein shuttles between the nucleus and cytoplasm. (ii) Both VHS-RNases localized in the cytoplasm following transfection. On cotransfection with pUL47, a fraction of VHS-RNase was translocated to the nucleus, suggesting that pUL47 may enable nuclear localization of VHS-RNase. (iii) In infected cells, VHS-RNase lacking NES degraded the short-lived AU-rich mRNAs but not the stable mRNAs. In transfected cells, both wild-type and NES mutant VHS-RNases effectively degraded cellular mRNAs. Our results suggest that the stable mRNAs are degraded in the cytoplasm, whereas the AU-rich mRNAs may be degraded in both cellular compartments. The selective sparing of viral mRNAs may take place during the nuclear phase in the course of interaction of pUL47, VHS-RNase, and nascent viral mRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号