首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Replication fidelity of RNA virus genomes is constrained by the opposing necessities of generating sufficient diversity for adaptation and maintaining genetic stability, but it is unclear how the largest viral RNA genomes have evolved and are maintained under these constraints. A coronavirus (CoV) nonstructural protein, nsp14, contains conserved active-site motifs of cellular exonucleases, including DNA proofreading enzymes, and the severe acute respiratory syndrome CoV (SARS-CoV) nsp14 has 3'-to-5' exoribonuclease (ExoN) activity in vitro. Here, we show that nsp14 ExoN remarkably increases replication fidelity of the CoV murine hepatitis virus (MHV). Replacement of conserved MHV ExoN active-site residues with alanines resulted in viable mutant viruses with growth and RNA synthesis defects that during passage accumulated 15-fold more mutations than wild-type virus without changes in growth fitness. The estimated mutation rate for ExoN mutants was similar to that reported for other RNA viruses, whereas that of wild-type MHV was less than the established rates for RNA viruses in general, suggesting that CoVs with intact ExoN replicate with unusually high fidelity. Our results indicate that nsp14 ExoN plays a critical role in prevention or repair of nucleotide incorporation errors during genome replication. The established mutants are unique tools to test the hypothesis that high replication fidelity is required for the evolution and stability of large RNA genomes.  相似文献   

7.
8.
Expression of the trypanosomal mitochondrial genome requires the insertion and deletion of uridylyl residues at specific sites in pre-mRNAs. RET2 terminal uridylyl transferase is an integral component of the RNA editing core complex (RECC) and is responsible for the guide-RNA-dependent U insertion reaction. By analyzing RNA-interference-based knock-in Trypanosoma brucei cell lines, purified editing complex, and individual protein, we have investigated RET2's association with the RECC. In addition, the U insertion activity exhibited by RET2 as an RECC subunit was compared with characteristics of the monomeric protein. We show that interaction of RET2 with RECC is accomplished via a protein-protein contact between its middle domain and a structural subunit, MP81. The recombinant RET2 catalyzes a faithful editing on gapped (precleaved) double-stranded RNA substrates, and this reaction requires an internal monophosphate group at the 5′ end of the mRNA 3′ cleavage fragment. However, RET2 processivity is limited to insertion of three Us. Incorporation into the RECC voids the internal phosphate requirement and allows filling of longer gaps similar to those observed in vivo. Remarkably, monomeric and RECC-embedded enzymes display a similar bimodal activity: the distributive insertion of a single uracil is followed by a processive extension limited by the number of guiding nucleotides. Based on the RNA substrate specificity of RET2 and the purine-rich nature of U insertion sites, we propose that the distributive + 1 insertion creates a substrate for the processive gap-filling reaction. Upon base-pairing of the + 1 extended 5′ cleavage fragment with a guiding nucleotide, this substrate is recognized by RET2 in a different mode compared to the product of the initial nucleolytic cleavage. Therefore, RET2 distinguishes base pairs in gapped RNA substrates which may constitute an additional checkpoint contributing to overall fidelity of the editing process.  相似文献   

9.
10.
3′-Terminal uridylyl transferases (TUTases) selectively bind uridine 5′-triphosphate (UTP) and catalyze the addition of uridine 5′-monophosphate to the 3′-hydroxyl of RNA substrates in a template-independent manner. RNA editing TUTase 1 and RNA editing TUTase 2 (RET2) play central roles in uridine insertion/deletion RNA editing, which is an essential part of mitochondrial RNA processing in trypanosomes. Although the conserved N-terminal (catalytic) domain and C-terminal (nucleotide base recognition) domain are readily distinguished in all known TUTases, nucleotide specificity, RNA substrate preference, processivity, quaternary structures, and auxiliary domains vary significantly among enzymes of divergent biological functions. RET2 acts as a subunit of the RNA editing core complex to carry out guide-RNA-dependent U-insertion into mitochondrial mRNA. By correlating mutational effects on RET2 activity as recombinant protein and as RNA editing core complex subunit with RNAi-based knock-in phenotypes, we have assessed the UTP and RNA binding sites in RET2. Here we demonstrate functional conservation of key UTP-binding and metal-ion-coordinating residues and identify amino acids involved in RNA substrate recognition. Invariant arginine residues 144 and 435 positioned in the vicinity of the UTP binding site are critical for RET2 activity on single-stranded and double-stranded RNAs, as well as function in vivo. Recognition of a double-stranded RNA, which resembles a guide RNA/mRNA duplex, is further facilitated by multipoint contacts across the RET2-specific middle domain.  相似文献   

11.
12.
Structural basis for substrate selection by t7 RNA polymerase   总被引:2,自引:0,他引:2  
  相似文献   

13.
The human mutY homolog (MUTYH) participates in base excision repair (BER), which is critical for repairing oxidized DNA bases and maintaining DNA replication fidelity. The polymorphic AluYb8 insertion in the 15th intron of the MUTYH gene (AluYb8MUTYH) has been shown to associate with an aggregated 8-hydroxy-2′-deoxyguanosine (8-OH-dG) lesion in genomic DNA and to serve as a risk factor for age-related diseases. In this work, we demonstrate that this variant is associated with a significant reduction of the type 1 MUTYH protein that localizes to mitochondria. Notably, this variant affects mitochondrial DNA (mtDNA) maintenance and functional mitochondrial mass in individuals homozygous for the AluYb8MUTYH variant. These findings provide evidence for an association between the AluYb8MUTYH variant and decreased mitochondrial homeostasis and, consequently, contribute to elucidating the roles of the AluYb8MUTYH variant in impairing the mitochondrial base excision repair (mtBER) system and increasing the risk of acquiring an age-related disease.  相似文献   

14.
15.
16.
To link conformational transitions noted for DNA polymerases with kinetic results describing catalytic efficiency and fidelity, we investigate the role of key DNA polymerase beta residues on subdomain motion through simulations of five single-residue mutants: Arg-283-Ala, Tyr-271-Ala, Asp-276-Val, Arg-258-Lys, and Arg-258-Ala. Since a movement toward a closed state was only observed for R258A, we suggest that Arg(258) is crucial in modulating motion preceding chemistry. Analyses of protein/DNA interactions in the mutant active site indicate distinctive hydrogen bonding and van der Waals patterns arising from compensatory structural adjustments. By comparing closed mutant complexes with the wild-type enzyme, we interpret experimentally derived nucleotide binding affinities in molecular terms: R283A (decreased), Y271A (increased), D276V (increased), and R258A (decreased). Thus, compensatory interactions (e.g., in Y271A with adjacent residues Phe(272), Asn(279), and Arg(283)) increase the overall binding affinity for the incoming nucleotide although direct interactions may decrease. Together with energetic analyses, we predict that R258G might increase the rate of nucleotide insertion and maintain enzyme fidelity as R258A; D276L might increase the nucleotide binding affinity more than D276V; and R283A/K280A might decrease the nucleotide binding affinity and increase misinsertion more than R283A. The combined observations regarding key roles of specific residues (e.g., Arg(258)) and compensatory interactions echo the dual nature of polymerase active site, namely versatility (to accommodate various basepairs) and specificity (for preserving fidelity) and underscore an organized but pliant active site essential to enzyme function.  相似文献   

17.
18.
Brown JA  Pack LR  Sanman LE  Suo Z 《DNA Repair》2011,10(1):24-33
The base excision repair (BER) pathway coordinates the replacement of 1-10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1-10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5'-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER.  相似文献   

19.
20.
The mitochondrial DNA polymerase from embryos of Drosophila melanogaster has been examined with regard to template-primer utilization, processivity, and fidelity of nucleotide polymerization. The enzyme replicates predominantly single-stranded and double-stranded DNAs: the rate of DNA synthesis is greatest on the gapped homopolymeric template poly(dA).oligo(dT), while the highest substrate specificity is observed on single-stranded DNA templates of natural DNA sequence. Kinetic experiments and direct physical analysis of DNA synthetic products indicate that the Drosophila DNA polymerase gamma polymerizes nucleotides by a quasi-processive mechanism. The mitochondrial enzyme demonstrates a high degree of accuracy in nucleotide incorporation which is nearly identical with that of the replicative DNA polymerase alpha from Drosophila embryos. Thus, the catalytic properties of the near-homogeneous Drosophila DNA polymerase gamma are consistent with the in vivo requirements for mitochondrial DNA synthesis as described in a variety of animal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号