首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the termites of the Brazilian Atlantic Forest, one of the most threatened biodiversity hotspots in the world, in regularly spaced sites from 7° S to 27° S latitude. To our knowledge, this is the only report of a latitudinal survey of termites at species level performed with a standardized sampling protocol. We evaluate termite diversity and abundance, and describe patterns of species composition based on feeding groups along the latitudinal gradient. We also describe the relative contribution of environmental variables to explain diversity patterns. Termite assemblages were investigated by standardized surveys at 15 Atlantic Forest sites, on six transects divided into five sections of 10 m², with 30 sections per site (or 300 m²/site), which were investigated by one trained person for one hour. Observed species richness and abundance were negatively correlated with latitude. The influence of latitude was explained mainly by variables related to temperature, precipitation and ambient energy (potential evapotranspiration). Our results also suggest that temperature exerts a greater constraint on Atlantic Forest termites than productivity, because ambient productivity increases with latitude in this forest but termite diversity decreases. Termite species richness in the Atlantic Forest showed a different pattern than those described for other organisms, increasing in diversity where the coastal‐forest strip narrows. Overall, our results indicate comparatively high termite species richness at northeastern sites and a significant impoverishment of termite assemblages in the southeastern and southern regions of the Atlantic Forest.  相似文献   

2.
Termites are important decomposers and ‘ecosystem engineers’ in tropical ecosystems. Furthermore, termite assemblages are sensitive to human land‐use intensification and often termite density and the importance of soil‐feeding termites decrease with land‐use intensification. These changes in termite assemblages may also lead to a decrease in termite‐mediated ecosystem processes (e.g. soil formation, cellulose decomposition). We compared density and functional composition of termites with cellulose removal from undisturbed primary forests to farmlands (Kakamega Forest, Western Kenya). In contrast to the expectation, we found no response of termite abundance along the gradient of land‐use intensification. However, as expected, the relative abundance of soil‐feeders decreased from primary forests to farmlands. In contrast, frequency of attack on tissue paper baits and removal of tissue showed a clear hump‐shaped relationship to land‐use intensification with high values in secondary forests. These nonconcordant patterns of density and functional composition of termite assemblages with cellulose removal by termites suggest that it may be misleading to infer changes in a process by the characteristics of the assemblage of organisms that mediate that process.  相似文献   

3.
The effects of selective logging on termite assemblages that build conspicuous nests were studied in two areas of semideciduous Atlantic Forest, located in the Reserva Biológica Guaribas, Northeastern Brazil. The two study areas went through selective logging until 1985 (A17) and 1972 (A30). In 2002, termite nests were studied in two plots of 1 ha (100 x 100 m), being one plot in each area. The nests were placed in each plot and the species were categorized in feeding groups. The structure of the study assemblages was different between the two areas. Diversity and richness of builder species were greater in the A30 area. Species that consume humus were more sensitive to selective logging. Nest abundance of humus feeding species was significantly higher in the A30 area, whereas nests of wood feeding species were significantly more abundant in the area A17. Nest ratio between humus and wood feeding species was 1:3 in the A30 area and 1:12 in the A17 area. Nests with greater volume were observed in the area A30, whereas abundance of inactive nests was significantly higher in A17. The time for habitat resilience after the selective logging influenced patterns of assemblage structure of termites in similar ways as described in other studies in tropical forests.  相似文献   

4.
Termites are major decomposers in tropical regions and play critical roles in many soil‐related processes. Studies conducted in Asia and the Neotropics suggest that habitat modification can strongly affect termite assemblages, but data on termite communities from forests in Africa, especially West Africa, are scarce. Here, we measured the short‐term impact of slash‐and‐burn agriculture on termite assemblages in an agricultural region of central Côte d'Ivoire. We assessed termite diversity and relative abundance in four habitat types: secondary forest, cleared forest, burned forest, and crop fields. The secondary forest had higher species richness compared with the other habitats, but all habitat types had similar assemblage structures. Fungus‐growing termites were the most abundant feeding group in all habitats. Soil feeders were most abundant in secondary forest, intermediately abundant in cleared and burned forests, and almost entirely absent in crop fields. Wood‐feeding species showed clear responses to burning; their abundances decreased after fire. We conclude that slash‐and‐burn agriculture does not appear to severely erode the diversity of termite assemblages. This could be due to the dominance of ecologically versatile fungus growers or to the relatively long time between clearing and burning. However, forest clearing negatively affects soil feeders, with the Apicotermitinae most affected by canopy loss.  相似文献   

5.
Termites are ecosystem engineers that play an important role in the biotransformation and re‐distribution of nutrients in soil. The dry forests are endemic repositories, but at same time, they are most threatened by extensive livestock and crop farming, fires, and climate change. In Colombia, the best‐protected dry forests are located in the north. The termite fauna of dry forests are poorly known. The aim was to identify the termite species occurring in tropical dry forests of the Colombian Caribbean coast in relation to diet and precipitation, temperature, elevation, and soil properties. A total of 32 species in 1,103 occurrences were found. Termitidae accounted for 78% of the species richness with the Anoplotermes‐group, Microcerotermes, and Nasutitermes being the dominant genera. Differences in species composition and abundance were found across sites. These differences may be linked to anthropogenic disturbance and polygyny and polydomy. Strikingly, our highest elevation site (334 m) had the highest species richness much higher than the two lower elevation sites. This implies an inversion of the common elevation‐diversity gradient, also found for termites which can be explained by increasing precipitation with elevation in the dry forest. An analysis of termite species richness at the global scale confirms that termite species richness correlates positively with rainfall. Hence, rainfall seems to positively affect termite diversity. In line, the studied Colombian tropical dry forests had low diversity compared to rain forests. A decline of species‐rich soil‐feeding termites with increasing aridity may explain why the highest termite diversity occurs in humid tropical rain forests. Abstract in Spanish is available with online material.  相似文献   

6.
Species from natural communities show different capacities for moving across contrasting habitats, and they may gradually respond along the transition between forests and anthropogenic areas. Because beetles are effective bioindicators, we analyzed the Coleoptera assemblage structure in the transition between sugarcane matrices and forest fragment. The study was conducted in an Atlantic rainforest fragment and sugarcane matrices after 2 and 6 months of replantation. Beetles were sampled in linear transects that were 50, 100, and 200 m from the forest edge and toward both forest core and matrices. We analyzed beetle abundance, species richness and composition, and diversity numbers. The abundance and species richness were higher in the forest, and species richness was higher at the sampling site 100 m inside the forest than at the gradients within the sugarcane matrices. The species composition differed between the forest and matrices, but not between the matrices with different replantation ages. Alpha diversity based on the number of species was higher in the forest, and alpha diversity based on the Shannon index was higher in the forest and matrix after 6 months of replantation. Our results suggest that the sugarcane matrices, chiefly the matrix after 2 months of replantation, sustain an impoverished beetle assemblage when compared with the forest fragment. Despite the strong habitat distinction, the beetle fauna in the sugarcane matrices was not affected by the horizontal distance from the forest. Here, we have highlighted the importance of forest fragments embedded in harsh matrices for the maintenance of biodiversity.  相似文献   

7.
The Brazilian Atlantic Forest is one of the most diverse environments, but it is also one of the most threatened areas in terms of loss of biodiversity and ecosystem services. Assessment of changes in the community structure during the recovery of forests can be performed using indicator organisms. Dung beetles perform several ecological functions and show high sensitivity to natural and anthropogenic environmental changes. This study aimed to investigate the effect of regeneration time of Atlantic Forest sites on structure of Scarabaeinae assemblages. We sampled dung beetles using ten baited pitfall traps per site, in six sites grouped into three classes of forest regeneration time (~30, ~60 and >80 years) in the southern Brazilian Atlantic Forest, during January 2015. A total of 520 individuals belonging to 16 species and nine genera of dung beetles were sampled. Rarefied species richness did not differ between sites with different regeneration times. Average species richness and abundance of Scarabaeinae was smaller in areas of shorter recovery time. True alpha diversity was higher in areas with intermediate recovery whereas Shannon diversity showed higher values in areas of shorter recovery. Approximately 29?% of the variation in abundance data of Scarabaeinae was explained by environmental variables, with one-third of this variation explained also by spatial predictors. External factors such as landscape management and farming practices in the surroundings must be taken into consideration in management plans and the management of natural areas for the recovery of biodiversity in the Atlantic Forest. These external factors can considerably affect the structure of communities and lead to scenarios of greater diversity in intermediate regeneration sites due to the heterogeneity of the landscape.  相似文献   

8.
Species richness, composition and abundance of the bryophyte diaspore bank of Central European temperate mixed forests were compared with the forest-floor bryophyte assemblage. The impact of environmental variables and anthropogenic disturbances, including tree species composition, stand structure, microclimate, light conditions, soil and litter properties, management history, and landscape properties, potentially influencing bryophyte diaspore bank assemblages were explored. Thirty-four, 70–100 years old mixed stands with differing tree species composition were examined in the ?rség National Park, Western Hungary. The diaspore bank was studied by soil collection and cultivation, and data were analysed by multivariate methods. Contrary to the forest-floor bryophyte assemblage, where substrate availability, tree species composition and stand structure were the most influential environmental variables, the composition and abundance of the diaspore bank was mainly affected by site conditions (microclimate, litter and soil properties). Species richness of the bryophyte diaspore bank was lower than that of the forest-floor bryophyte assemblage. Short-lived mosses (colonists, short-lived shuttles) were dominant in the diaspore bank, as opposed to the forest-floor bryophyte community, where perennial mosses dominated. In the studied forests, the importance of the bryophyte diaspore bank was relatively low in the regeneration and maintenance of the forest-floor bryophyte vegetation.  相似文献   

9.
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.  相似文献   

10.
Termites play important roles in organic matter decomposition, nutrient cycling, and soil structure in tropical rain forests. When forests are replaced by agriculture, termite species richness, abundance, and function often decline. We compared the termite assemblage of a primary forest site with that of a low plant diversity, palm-based agroforest (five plant species) and a high plant diversity, home-garden agroforest (10 plant species) using a rapid biodiversity assessment protocol. In comparing the primary forest termite species composition to previously published studies, we found soil feeders and the Apicotermitinae to be more dominant than previously reported in Amazonia. Thirty percent of the species belonged to the Apicotermitinae, and an unusually high percentage (57%) of species were soil feeders. Unexpectedly, the palm-based agroforest, despite its lower plant diversity, was closer to primary forest in termite species composition, rate of species accumulation, and proportions of species in taxonomic and functional classes than was the home-garden agroforest. This suggests that particular plant attributes may better determine the termite assemblage than plant diversity alone in these agroecosystems. Unlike other agroecosystems reported in the literature, Apicotermitinae and soil feeders were proportionally more abundant in these agroforests than in primary forest. The ability of agroforests to support populations of soil feeders has a potentially positive effect on soil fertility in these agroecosystems; insomuch as feeding guild is a proxy for function, these closed-canopy agroforests may be able to sustain the same termite-mediated functions as primary forest.  相似文献   

11.
Roads and road-building are among the most important environmental impacts on forests near urban areas, but their effects on ecosystem processes and species distributions remain poorly known. Termites are the primary decomposer organisms in tropical forests and their spatial distribution is strongly affected by vegetation and soil structure. We studied the impacts of road construction on termite community structure in an Amazonian forest fragment near Manaus, Brazil. One leading question was whether the fragment under study was large enough to maintain the termite species pool present in nearby continuous forests. We also asked how soil moisture and canopy openness varied with proximity to roads, and whether these changes were associated with changes in termite species richness and composition in the fragment. While the forest fragment had a termite composition very similar to that of continuous forests, roads caused important changes in soil moisture and canopy openness, especially when close to forest edges. At distances of up to 81 m from roads, changes in soil moisture were significantly related to changes in termite species composition, but there was no correlation between canopy openness and species richness or composition. These results suggest that fragmentation caused by roads impacts termites in a different and less damaging manner than fragmentation caused by other kinds of degradation, and that even fragments bisected by roads can support very diverse communities and even undescribed taxa of termites. We conclude that a buffer zone should be established for conservation purposes in the reserves surrounded by roads.  相似文献   

12.
The composition of termite assemblages was analyzed in three caatinga sites of the Esta??o Ecológica do Seridó, located in the municipality of Serra Negra do Norte, in the state of Rio Grande do Norte, Brazil. These sites have been subjected to selective logging, and cleared for pasture and farming. A standardized sampling protocol for termite assemblages (30h/person/site) was conducted between September 2007 and February 2009. At each site we measured environmental variables, such as soil pH and organic matter, necromass stock, vegetation height, stem diameter at ankle height (DAH) and the largest and the smallest crown width. Ten species of termites, belonging to eight genera and three families, were found at the three experimental sites. Four feeding groups were sampled: wood-feeders, soil-feeders, wood-soil interface feeders and leaf-feeders. The wood-feeders were dominant in number of species and number of encounters at all sites. In general, the sites were not significantly different in relation to the environmental variables measured. The same pattern was observed for termite assemblages, where no significant differences in species richness, relative abundance and taxonomic and functional composition were observed between the three sites. The agreement between composition of assemblages and environmental variables reinforces the potential of termites as biological indicators of habitat quality.  相似文献   

13.
Predation is a key determinant of prey community structure, but few studies have measured the effect of multiple predators on a highly diverse prey community. In this study, we asked whether the abundance, species richness, and species composition of a species‐rich assemblage of termites in an Amazonian rain forest is more strongly associated with the density of predatory ants or with measures of vegetation, and soil texture and chemistry. We sampled termite assemblages with standardized hand‐collecting in 30 transects arranged in a 5 km × 6 km grid in a terra firme Amazonian rain forest. For each transect, we also measured vegetation structure, soil texture, and soil phosphorus, and estimated the density of predatory ants from baits, pitfall traps, and Winkler samples. Seventy‐nine termite species were recorded, and the total density of predatory ants was the strongest single predictor of local termite abundance (r = ?0.66) and termite species richness (r = ?0.44). In contrast, termite abundance and species richness were not strongly correlated with edaphic conditions (¦r¦ < 0.01), or with the density of non‐predatory ants (rabund = ?0.27; rs = ?0.06). Termite species composition was correlated with soil phosphorus content (r = 0.79), clay content (r = ?0.75), and tree density (r = ?0.42). Assemblage patterns were consistent with the hypothesis that ants collectively behaved as generalist predators, reducing total termite abundance, and species richness. There was no evidence that ants behaved as keystone predators, or that any single termite species benefited from the reduction in the abundance of potential competitors.  相似文献   

14.
Tropical forests across the world provide important habitats for a diverse number of conservation priority species, yet are under threat from a range of anthropogenic impacts including logging. This study aims to quantify mammalian biodiversity in unlogged and logged forests in the adjoining Tembat and Petuang Forest Reserves, Terengganu, on the East Coast of Peninsular Malaysia. Data was collected over a series of surveys using direct and indirect observation methods from 2008 to 2014. A total of 30 medium and large sized mammals species were identified, with 27 of those species found in unlogged forests and 22 species in logged forests. Carnivores encompassed 11 species from 67 observations representing 15% of the total number of observations. The family Felidae had the highest number of species (six species), followed by Hylobatidae, Cercopithecidae and Suidae with three species each. A total of 17 species contributed to more than 90% of the mammal community in the unlogged and logged forests, while six species were uncommon and only observed once during the entire survey. Species abundance in the unlogged forest was significantly greater than the logged forests, but the difference was not significant for species richness. This study provides critical baseline information on the impact of unlogged and logged forests and the identification of threatened species warrant the establishment of conservation measures such as anti-poaching patrol and ranger stations in the study area.  相似文献   

15.
Termites are frequently dominant invertebrate decomposers and bioturbators in lowland tropical forests and therefore strongly influence ecosystem processes favouring soil stability, porosity and nutrient retention. In this study, we provide the first spatially replicated dataset on termite assemblage composition, abundance and biomass in a Peruvian rainforest by sampling six separate plots. In addition, two alternative sampling methods (transect method-TM and quadrat method-QM), providing termite species density data, were compared among the plots. The relationships between a range of environmental and spatial variables and species composition were examined using canonical correspondence analysis variation partitioning. We found that the TM captured a higher proportion of the known species in the site (82 %) compared with the QM (66 %). In addition, 56 % of the species sampled by TM were common between the plots while only 18 % of species overlapped using the QM. The QM may therefore potentially have undersampled the species pool. Environmental variables were shown to explain a larger proportion of the species patterns than the spatial variables with elevation, soil temperature and distance to the river being the most important. We discuss the impacts of the environmental and spatial variables on termite species composition.  相似文献   

16.
Aim To (1) describe termite functional diversity patterns across five tropical regions using local species richness sampling of standardized areas of habitat; (2) assess the relative importance of environmental factors operating at different spatial and temporal scales in influencing variation in species representation within feeding groups and functional taxonomic groups across the tropics; (3) achieve a synthesis to explain the observed patterns of convergence and divergence in termite functional diversity that draws on termite ecological and biogeographical evidence to‐date, as well as the latest evidence for the evolutionary and distributional history of tropical rain forests. Location Pantropical. Methods A pantropical termite species richness data set was obtained through sampling of eighty‐seven standardized local termite diversity transects from twenty‐nine locations across five tropical regions. Local‐scale, intermediate‐scale and large‐scale environmental data were collected for each transect. Standardized termite assemblage and environmental data were analysed at the levels of whole assemblages and feeding groups (using components of variance analysis) and at the level of functional taxonomic groups (using correspondence analysis and canonical correspondence analysis). Results Overall species richness of local assemblages showed a greater component of variation attributable to local habitat disturbance level than to region. However, an analysis accounting for species richness across termite feeding groups indicated a much larger component of variation attributable to region. Mean local assemblage body size also showed the greater overall significance of region compared with habitat type in influencing variation. Ordination of functional taxonomic group data revealed a primary gradient of variation corresponding to rank order of species richness within sites and to mean local species richness within regions. The latter was in the order: Africa > south America > south‐east Asia > Madagascar > Australia. This primary gradient of species richness decrease can be explained by a decrease in species richness of less dispersive functional taxonomic groups feeding on more humified food substrates such as soil. Hence, the transects from more depauperate sites/regions were dominated by more dispersive functional taxonomic groups feeding on less humified food substrates such as dead wood. Direct gradient analysis indicated that ‘region’ and other large‐scale factors were the most important in explaining patterns of local termite functional diversity followed by intermediate‐scale geographical and site variables and, finally, local‐scale ecological variables. Synthesis and main conclusions Within regions, centres of termite functional diversity lie in lowland equatorial closed canopy tropical forests. Soil feeding termite evolution further down food substrate humification gradients is therefore more likely to have depended on the long‐term presence of this habitat. Known ecological and energetic constraints upon contemporary soil feeders lend support for this hypothesis. We propose further that the anomalous distribution of termite soil feeder species richness is partly explained by their generally very poor dispersal abilities across oceans. Evolution, radiation and dispersal of soil feeder diversity appears to have been largely restricted to what are now the African and south American regions. The inter‐regional differences in contemporary local patterns of termite species richness revealed by the global data set point to the possibility of large differences in consequent ecosystem processes in apparently similar habitats on different continents.  相似文献   

17.
Pselaphine beetles (Coleoptera: Staphylinidae: Pselaphinae) are cosmopolitan, species‐rich, and yet poorly studied, particularly in the tropics. We sampled beetles in three types of primary forest and two types of disturbed forest habitats in eastern Thailand to assess the utility of pselaphine beetles as bioindicators of forest disturbance. We simultaneously measured leaf litter mass, soil moisture, soil acidity and canopy cover at each site to infer which environmental factors affect pselaphine beetle diversity and abundance. At each site, pselaphine beetles were extracted from ten 1 m2 samples of leaf litter and soil with Tullgren funnels. We sampled 1867 adult beetles representing six supertribes, 51 genera and 114 morphospecies; 7% of the genera and 92% of the species were undescribed. Forest types differed significantly in species richness, abundance, diversity and evenness. Primary forest had greater numbers of species and individuals, and higher diversity indices (H′). Teak plantation and secondary forest had substantially fewer individuals and species of pselaphine beetles. Species composition differed between primary and degraded forests. Canopy cover, soil moisture, and leaf litter mass positively correlated with beetle species richness and abundance. Leaf litter mass and soil moisture were the two most important factors affecting the diversity of pselaphine beetle assemblages. Among the 114 morphospecies collected, 43 morphospecies were specific to two or three habitats and 64 morphospecies were found only in a single habitat. Thus pselaphine beetles appear to have rather narrow habitat requirements and their presence/absence was correlated with environmental differences. These traits make pselaphine beetles a suitable bioindicator taxon for assessing forest litter diversity and monitoring habitat change.  相似文献   

18.
Through their role as ‘ecosystem engineers’, termites provide a range of ecosystem services including decomposition, and carbon and nitrogen cycling. Although termite diversity levels differ between regions as a result of variation in regional species pool size, in general, termite diversity is thought to decline with elevation. This study (1) investigated how termite species density, abundance, functional group diversity and termite attack on dead wood vary with altitude along an Amazon–Andes altitudinal gradient in Peru; (2) identified likely environmental causes of this pattern; and (3) explored the implications of termite presence for ecosystem functioning (notably for decomposition). Termites were sampled with a standardized 100 × 2 m straight‐belt transect at five undisturbed forest sites along a gradient 190 to 3025 m, as were environmental variables and termite and fungus attack on dead wood. Termite diversity was similar to that found at comparable sites in South America, and there was little turnover of assemblage composition with elevation suggesting that montane specialists are not present. Termite diversity declined with increased elevation, though the upper distribution limit for termites was at a lower elevation than anticipated. We suggest that key drivers of this elevation pattern are reduced temperature with altitude and mid‐elevation peaks in soil water content. Also, attack on dead wood diminished with decreasing termite indirect absolute abundance, while the depth of the soil humic layer increased. We hypothesize that termite abundance is a major accelerant of decomposition rates (and associated mineralization) in Amazonian forests.  相似文献   

19.
The relationship between invasion success and native biodiversity is central to biological invasion research. New theoretical and analytical approaches have revealed that spatial scale, land‐use factors and community assemblages are important predictors of the relationship between community diversity and invasibility and the negative effects of invasive species on community diversity. In this study we assess if the abundance of Lithobates catesbeianus, the American bullfrog, negatively affects the richness of native amphibian species in Atlantic Forest waterbodies in Brazil. Although this species has been invading Atlantic Forest areas since the 1930s, studies that estimate the invasion effects upon native species diversity are lacking. We developed a model to understand the impact of environmental, spatial and species composition gradients on the relationships between bullfrogs and native species richness. We found a weak positive relationship between bullfrog abundance and species richness in invaded areas. The path model revealed that this is an indirect relationship mediated by community composition gradients. Our results indicate that bullfrogs are more abundant in certain amphibian communities, which can be species‐rich. Local factors describing habitat heterogeneity were the main predictors of amphibian species richness and composition and bullfrog abundance. Our results reinforce the important role of habitats in determining both native species diversity and potential invasibility.  相似文献   

20.
Assemblages of drosophilids have been characterised in several environments of the Brazilian territory, like the Atlantic Rain Forest, urban areas, cerrados, the Amazon Forest, and others. The present survey is the first attempt to characterise the fauna of Drosophilidae in mangrove forests, an environment typical of tropical coasts worldwide. Twenty-eight samples were collected from the three main mangrove forests of Santa Catarina Island, southern Brazil, using banana-baited traps hung in trees. Samples were taken in January (summer), April (autumn), July (winter) and October (spring) between July 2002 and July 2005. In total, 82,942 specimens of drosophilids were caught, belonging to 69 species of six genera - Amiota Loew, Drosophila Fallén, Leucophenga Mik, Scaptodrosophila Duda, Zaprionus Coquillett and Zygothrica Wiedemann. The high abundance of D. simulans Sturtevant was remarkable, with some notable peaks of D. malerkotliana Parshad & Paika in autumn samples. Other common species were Zaprionus indianus Gupta, D. mediostriata Duda and D. willistoni Sturtevant. We also collected 45,826 flies of family Curtonotidae, the sister-group of Drosophilidae virtually absent in other environments. The assemblages of drosophilids were very similar in the three mangrove forests surveyed, despite the different surrounding environments. In general, the species sampled in the mangroves were the same as those observed in the surrounding environments, but in varying abundances. This suggests that drosophilids are differently affected by environmental pressures operating in mangroves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号