首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Sinorhizobium meliloti, catabolite repression is influenced by a noncanonical nitrogen-type phosphotransferase system (PTSNtr). In this PTSNtr, the protein HPr is phosphorylated on histidine-22 by the enzyme EINtr and the flux of phosphate through this residue onto downstream proteins leads to an increase in succinate-mediated catabolite repression (SMCR). In order to explore the molecular determinants of HPr phosphorylation by EINtr, both proteins were purified and the activity of EINtr was measured. Experimentally determined kinetic parameters of EINtr activity were significantly slower than those determined for the carbohydrate-type EI in Escherichia coli. Enzymatic assays showed that glutamine, a signal of nitrogen availability in many Gram-negative bacteria, strongly inhibits EINtr. Binding experiments using the isolated GAF domain of EINtr (EIGAF) showed that it is the domain responsible for detection of glutamine. EINtr activity was not affected by α-ketoglutarate, and no binding between the EIGAF and α-ketoglutarate could be detected. These data suggest that in S. melilloti, EINtr phosphorylation of HPr is regulated by signals from both carbon metabolism (phosphoenolpyruvate) and nitrogen metabolism (glutamine).  相似文献   

2.
In addition to the phosphoenolpyruvate:sugar phosphotransferase system (sugar PTS), most proteobacteria possess a paralogous system (nitrogen phosphotransferase system, PTSNtr). The first proteins in both pathways are enzymes (enzyme Isugar and enzyme INtr) that can be autophosphorylated by phosphoenolpyruvate. The most striking difference between enzyme Isugar and enzyme INtr is the presence of a GAF domain at the N‐terminus of enzyme INtr. Since the PTSNtr was identified in 1995, it has been implicated in a variety of cellular processes in many proteobacteria and many of these regulations have been shown to be dependent on the phosphorylation state of PTSNtr components. However, there has been little evidence that any component of this so‐called PTSNtr is directly involved in nitrogen metabolism. Moreover, a signal regulating the phosphorylation state of the PTSNtr had not been uncovered. Here, we demonstrate that glutamine and α‐ketoglutarate, the canonical signals of nitrogen availability, reciprocally regulate the phosphorylation state of the PTSNtr by direct effects on enzyme INtr autophosphorylation and the GAF signal transduction domain is necessary for the regulation of enzyme INtr activity by the two signal molecules. Taken together, our results suggest that the PTSNtr senses nitrogen availability.  相似文献   

3.
The nitrogen phosphotransferase system (PTSNtr) consists of EINtr, NPr, and EIIANtr. The active phosphate moiety derived from phosphoenolpyruvate is transferred through EINtr and NPr to EIIANtr. Sinorhizobium fredii can establish a nitrogen-fixing symbiosis with the legume crops soybean (as determinate nodules) and pigeonpea (as indeterminate nodules). In this study, S. fredii strains with mutations in ptsP and ptsO (encoding EINtr and NPr, respectively) formed ineffective nodules on soybeans, while a strain with a ptsN mutation (encoding EIIANtr) was not defective in symbiosis with soybeans. Notable reductions in the numbers of bacteroids within each symbiosome and of poly-β-hydroxybutyrate granules in bacteroids were observed in nodules infected by the ptsP or ptsO mutant strains but not in those infected with the ptsN mutant strain. However, these defects of the ptsP and ptsO mutant strains were recovered in ptsP ptsN and ptsO ptsN double-mutant strains, implying a negative role of unphosphorylated EIIANtr in symbiosis. Moreover, the symbiotic defect of the ptsP mutant was also recovered by expressing EINtr with or without the GAF domain, indicating that the putative glutamine-sensing domain GAF is dispensable in symbiotic interactions. The critical role of PTSNtr in symbiosis was also observed when related PTSNtr mutant strains of S. fredii were inoculated on pigeonpea plants. Furthermore, nodule occupancy and carbon utilization tests suggested that multiple outputs could be derived from components of PTSNtr in addition to the negative role of unphosphorylated EIIANtr.  相似文献   

4.
To investigate a possible role of the nitrogen-PTS (PTSNtr) in controlling carbon metabolism, we determined the growth of Escherichia coli LJ110 and of isogenic derivatives, mutated in components of the PTSNtr, on different carbon sources. The PTSNtr is a set of proteins homologous to the PEP-dependent phosphotransferase system (C-PTS) that transfers a phosphate group from PEP over EINtr (encoded by ptsP) and NPr (encoded by ptsO) to EIIANtr (encoded by ptsN). Strains deleted in ptsN were characterized by a high acetate production coupled to slow growth on glycolytic substrates. The ΔptsP and the ΔptsO strain showed the same behavior as the parent strain. As the phosphorylation level of EIIANtr in these mutants differed significantly from that of the parent strain, phosphorylation of EIIANtr obviously is not important for its function. During growth in minimal medium with defined carbon sources, EIIANtr was always completely phosphorylated in LJ110. Significant amounts of dephosphorylated EIIANtr were only visible in strains lacking EINtr or NPr. mRNA expression studies on glucose revealed a downregulation of genes encoding TCA cycle enzymes when EIIANtr was absent. 13C-flux analyses confirmed higher fluxes towards acetate and lower fluxes in the TCA cycle in the ptsN mutants but additionally hinted to a slightly but significantly increased flux through the pyruvate dehydrogenase complex (PDH). During growth on succinate the ΔptsN strain accumulated mutations in rpoS, while no rpoS mutants were observed for the ΔptsN-O strain. This hints to an additional function of NPr during growth with succinate.  相似文献   

5.
6.
The nitrogen‐related phosphoenolpyruvate phosphotransferase system (PTSNtr) is involved in controlling ammonia assimilation and nitrogen fixation. The additional role of PTSNtr as a regulatory link between nitrogen and carbon utilization in Escherichia coli is assumed to be closely related to molecular functions of IIANtr in potassium homeostasis. We have determined the crystal structure of IIANtr from Burkholderia pseudomallei (BpIIANtr), which is a causative agent of melioidosis. The crystal structure of dimeric BpIIANtr determined at 3.0 Å revealed that its active sites are mutually blocked. This dimeric state is stabilized by charge and weak hydrophobic interactions. Overall monomeric structure and the active site residues, Arg51 and His67, of BpIIANtr are well conserved with those of IIANtr enzymes from E. coli and Neisseria meningitides. Interestingly, His113 of BpIIANtr, which corresponds to a key residue in another phosphoryl group relay in the mannitol‐specific enzyme EIIA family (EIIAMtl), is located away from the active site due to the loop connecting β5 and α3. Combined with other differences in molecular surface properties, these structural signatures distinguish the IIANtr family from the EIIAMtl family. Since, there is no gene for NPr in the chromosome of B. pseudomallei, modeling and docking studies of the BpIIANtrBpHPr complex has been performed to support the proposal on the NPr‐like activity of BpHPr. A potential dual role of BpHPr as a nonspecific phosphocarrier protein interacting with both sugar EIIAs and IIANtr in B. pseudomallei has been discussed. Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Many Proteobacteria possess the paralogous PTSNtr, in addition to the sugar transport phosphotransferase system (PTS). In the PTSNtr phosphoryl‐groups are transferred from phosphoenolpyruvate to protein EIIANtr via the phosphotransferases EINtr and NPr. The PTSNtr has been implicated in regulation of diverse physiological processes. In Escherichia coli, the PTSNtr plays a role in potassium homeostasis. In particular, EIIANtr binds to and stimulates activity of a two‐component histidine kinase (KdpD) resulting in increased expression of the genes encoding the high‐affinity K+ transporter KdpFABC. Here, we show that the phosphate (pho) regulon is likewise modulated by PTSNtr. The pho regulon, which comprises more than 30 genes, is activated by the two‐component system PhoR/PhoB under conditions of phosphate starvation. Mutants lacking EIIANtr are unable to fully activate the pho genes and exhibit a growth delay upon adaptation to phosphate limitation. In contrast, pho expression is increased above the wild‐type level in mutants deficient for EIIANtr phosphorylation suggesting that non‐phosphorylated EIIANtr modulates pho. Protein interaction analyses reveal binding of EIIANtr to histidine kinase PhoR. This interaction increases the amount of phosphorylated response regulator PhoB. Thus, EIIANtr is an accessory protein that modulates the activities of two distinct sensor kinases, KdpD and PhoR, in E. coli.  相似文献   

8.
Enzyme INtr is the first protein in the nitrogen phosphotransferase pathway. Using an array of biochemical and biophysical tools, we characterized the protein, compared its properties to that of EI of the carbohydrate PTS and, in addition, examined the effect of substitution of all nonexchangeable protons by deuterium (perdeuteration) on the properties of EINtr. Notably, we find that the catalytic function (autophosphorylation and phosphotransfer to NPr) remains unperturbed while its stability is modulated by deuteration. In particular, the deuterated form exhibits a reduction of approximately 4 °C in thermal stability, enhanced oligomerization propensity, as well as increased sensitivity to proteolysis in vitro. We investigated tertiary, secondary, and local structural changes, both in the absence and presence of PEP, using near- and far-UV circular dichroism and Trp fluorescence spectroscopy. Our data demonstrate that the aromatic residues are particularly sensitive probes for detecting effects of deuteration with an enhanced quantum yield upon PEP binding and apparent decreases in tertiary contacts for Tyr and Trp side chains. Trp mutagenesis studies showed that the region around Trp522 responds to binding of both PEP and NPr. The significance of these results in the context of structural analysis of EINtr are evaluated.  相似文献   

9.
10.
Pseudomonas aeruginosa is an opportunistic human pathogen whose survival is aided by forming communities known as biofilms, in which cells are encased in a self‐produced matrix. We devised a mutant screen based on colony morphology to identify additional genes with previously unappreciated roles in biofilm formation. Our screen, which identified most known biofilm‐related genes, also uncovered PA14_16550 and PA14_69700, deletions of which abrogated and augmented biofilm formation respectively. We also identified ptsP, which encodes enzyme I of the nitrogen‐regulated phosphotransferase (PTSNtr) system, as being important for cyclic‐di‐GMP production and for biofilm formation. Further experiments showed that biofilm formation is hindered in the absence of phosphotransfer through the PTSNtr, but only in the presence of enzyme II (PtsN), the putative regulatory module of the PTSNtr. These results implicate unphosphorylated PtsN as a negative regulator of biofilm formation and establish one of the first known roles of the PTSNtr in P. aeruginosa.  相似文献   

11.

Background

Pseudomonas putida KT2440 is endowed with a variant of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTSNtr), which is not related to sugar transport but believed to rule the metabolic balance of carbon vs. nitrogen. The metabolic targets of such a system are largely unknown.

Methods

Dielectric breakdown of P. putida cells grown in rich medium revealed the presence of forms of the EIIANtr (PtsN) component of PTSNtr, which were strongly associated to other cytoplasmic proteins. To investigate such intracellular partners of EIIANtr, a soluble protein extract of bacteria bearing an E epitope tagged version of PtsN was immunoprecipitated with a monoclonal anti-E antibody and the pulled-down proteins identified by mass spectrometry.

Results

The E1 subunit of the pyruvate dehydrogenase (PDH) complex, the product of the aceE gene, was identified as a major interaction partner of EIIANtr. To examine the effect of EIIANtr on PDH, the enzyme activity was measured in extracts of isogenic ptsN+/ptsNP. putida strains and the role of phosphorylation was determined. Expression of PtsN and AceE proteins fused to different fluorescent moieties and confocal laser microscopy indicated a significant co-localization of the two proteins in the bacterial cytoplasm.

Conclusion

EIIANtr down-regulates PDH activity. Both genetic and biochemical evidence revealed that the non-phosphorylated form of PtsN is the protein species that inhibits PDH.

General significance

EIIANtr takes part in the node of C metabolism that checks the flux of carbon from carbohydrates into the Krebs cycle by means of direct protein–protein interactions with AceE. This type of control might connect metabolism to many other cellular functions. This article is part of a Special Issue entitled: Systems Biology of Microorganisms.  相似文献   

12.
The bacterial PEP:sugar PTS consists of a cascade of several proteins involved in the uptake and phosphorylation of carbohydrates, and in signal transduction pathways. Its uniqueness in bacteria makes the PTS a target for new antibacterial drugs. These drugs can be obtained from peptides or protein fragments able to interfere with the first reaction of the protein cascade: the phosphorylation of the HPr by the first enzyme, the so-called enzyme EI. To that end, we designed a peptide, HPr9-30, spanning residues 9 to 30 of the intact HPr protein, containing the active site histidine (His-15) and the first α-helix of HPr of Streptomyces coelicolor, HPrsc. By using fluorescence and circular dichroism, we first determined qualitatively that HPrsc and HPr9-30 did bind to EIsc, the enzyme EI from S. coelicolor. Then, we determined quantitatively the binding affinities of HPr9-30 and HPrsc for EIsc by using ITC and STD-NMR. The STD-NMR experiments indicate that the epitope region of HPr9-30 was formed by residues Leu-14, His-15, Ile-21, and Val-23. The binding reaction between EIsc and HPrsc is enthalpy driven and in other species is entropy driven; further, the affinity of HPrsc for EIsc was smaller than in other species. However, the affinity of HPr9-30 for EIsc was only moderately lower than that of EIsc for HPrsc, suggesting that this peptide could be considered a promising hit compound for designing new inhibitors against the PTS.  相似文献   

13.
Bacterial phosphoenolpyruvate-dependent phosphotransferase systems (PTS) play multiple roles in addition to sugar transport. Recent studies revealed that enzyme IIANtr of the nitrogen PTS regulates the intracellular concentration of K+ by direct interaction with TrkA and KdpD. In this study, we show that dephosphorylated NPr of the nitrogen PTS interacts with Escherichia coli LpxD which catalyzes biosynthesis of lipid A of the lipopolysaccharide (LPS) layer. Mutations in lipid A biosynthetic genes such as lpxD are known to confer hypersensitivity to hydrophobic antibiotics such as rifampin; a ptsO (encoding NPr) deletion mutant showed increased resistance to rifampin and increased LPS biosynthesis. Taken together, our data suggest that unphosphorylated NPr decreases lipid A biosynthesis by inhibiting LpxD activity.  相似文献   

14.
EI complex formation of AP–I, existing as dimer, with subtilisin BPN’ was investigated in detail.

By changing the E/I2 ratio in the reaction mixture, two types of EI complex were recognized; E2I2 complex which was composed of two moles of subtilisin BPN’ and one mole (two subunits) of AP–I, and EI2 complex which was composed of one mole of the enzyme and one mole of AP–I. Their existence was demonstrated by gel filtration, inhibitory equivalent, disc electrophoresis and isoleucine content in the complexes.

The former complex is thought to be a final and stable complex, and the latter to be an intermediate or transient type of complex.  相似文献   

15.
16.
The solution structure of the complex between the cytoplasmic A domain (IIA(Mtl)) of the mannitol transporter II(Mannitol) and the histidine-containing phosphocarrier protein (HPr) of the Escherichia coli phosphotransferase system has been solved by NMR, including the use of conjoined rigid body/torsion angle dynamics, and residual dipolar couplings, coupled with cross-validation, to permit accurate orientation of the two proteins. A convex surface on HPr, formed by helices 1 and 2, interacts with a complementary concave depression on the surface of IIA(Mtl) formed by helix 3, portions of helices 2 and 4, and beta-strands 2 and 3. The majority of intermolecular contacts are hydrophobic, with a small number of electrostatic interactions at the periphery of the interface. The active site histidines, His-15 of HPr and His-65 of IIA(Mtl), are in close spatial proximity, and a pentacoordinate phosphoryl transition state can be readily accommodated with no change in protein-protein orientation and only minimal perturbations of the backbone immediately adjacent to the histidines. Comparison with two previously solved structures of complexes of HPr with partner proteins of the phosphotransferase system, the N-terminal domain of enzyme I (EIN) and enzyme IIA(Glucose) (IIA(Glc)), reveals a number of common features despite the fact that EIN, IIA(Glc), and IIA(Mtl) bear no structural resemblance to one another. Thus, entirely different underlying structural elements can form binding surfaces for HPr that are similar in terms of both shape and residue composition. These structural comparisons illustrate the roles of surface and residue complementarity, redundancy, incremental build-up of specificity and conformational side chain plasticity in the formation of transient specific protein-protein complexes in signal transduction pathways.  相似文献   

17.
The standard mathematical model for stepwise “slow-binding” enzyme inhibition (E+IEIEI*) assumes that the initial enzyme–inhibitor complex EI is always at equilibrium with the free component species E and I. This assumption implies that the dissociation rate constant (EIE+I) is infinitely higher than the isomerization rate constant for EIEI*. This paper presents a more general mathematical treatment, under the steady state approximation rather than the usual rapid-equilibrium approximation, whereby the two rate constants for the disappearance of EI are allowed to be comparable in magnitude. Experimentally relevant illustrative examples include discrimination between a single-step and a two-step mechanism for slow-binding inhibition kinetics.  相似文献   

18.
The inhibition of highly purified rat liverl-threonine dehydratase (l-threonine hydro-lyase (deaminating), EC 4.2.1.16) by aminothiols (l-cysteine,d-cysteine, cysteamine) has been studied. Single inhibition experiments evaluated by Lineweaver-Burk and Dixon plots showed, in a given concentration range, partially (parabolic) competitive inhibitions, indicating two binding sites for each inhibitor. Double inhibition experiments revealed that the inhibition was antagonistic, the two inhibitors weakening each other's effect. Formation of EI1 and EI2 binary complexes, and ESI1, ESI2 and EI1I2 ternary complexes was demonstrated, while formation of the quaternary complex ESI1I2 was ruled out. It is assumed that one inhibitor-binding site coincides with the substrate-binding center while the second inhibitor-binding (allosteric, regulatory) site may comprise the pyridoxal-phosphate-binding SH group(s). The comparison between Km and Ki values and the evaluation of intracellular concentrations ofl-threonine,l-cysteine and cysteamine suggest a possible physiological role of the inhibition.  相似文献   

19.
The phosphotransferase system (PTS) is involved in the use of carbon sources in bacteria. Bacillus sphaericus, a bacterium with the ability to produce insecticidal proteins, is unable to use hexoses and pentoses as the sole carbon source, but it has ptsHI genes encoding the two general proteins of the PTS: enzyme I (EI) and the histidine phosphocarrier (HPr). In this work, we describe the biophysical and structural properties of HPr from B. sphaericus, HPrbs, and its affinity towards EI of other species to find out whether there is inter-species binding. Conversely to what happens to other members of the HPr family, HPrbs forms several self-associated species. The conformational stability of the protein is low, and it unfolds irreversibly during heating. The protein binds to the N-terminal domain of EI from Streptomyces coelicolor, EINsc, with a higher affinity than that of the natural partner of EINsc, HPrsc. Modelling of the complex between EINsc and HPrbs suggests that binding occurs similarly to that observed in other HPr species. We discuss the functional implications of the oligomeric states of HPrbs for the glycolytic activity of B. sphaericus, as well as a strategy to inhibit binding between HPrsc and EINsc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号