首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EBs and CLIPs are evolutionarily conserved proteins, which associate with the tips of growing microtubules, and regulate microtubule dynamics and their interactions with intracellular structures. In this study we investigated the functional relationship of CLIP-170 and CLIP-115 with the three EB family members, EB1, EB2(RP1), and EB3 in mammalian cells. We showed that both CLIPs bind to EB proteins directly. The C-terminal tyrosine residue of EB proteins is important for this interaction. When EB1 and EB3 or all three EBs were significantly depleted using RNA interference, CLIPs accumulated at the MT tips at a reduced level, because CLIP dissociation from the tips was accelerated. Normal CLIP localization was restored by expression of EB1 but not of EB2. An EB1 mutant lacking the C-terminal tail could also fully rescue CLIP dissociation kinetics, but could only partially restore CLIP accumulation at the tips, suggesting that the interaction of CLIPs with the EB tails contributes to CLIP localization. When EB1 was distributed evenly along the microtubules because of overexpression, it slowed down CLIP dissociation but did not abolish its preferential plus-end localization, indicating that CLIPs possess an intrinsic affinity for growing microtubule ends, which is enhanced by an interaction with the EBs.  相似文献   

2.
EB proteins accumulate at the tips of growing microtubules and recruit to them a multitude of factors to regulate microtubule functions. A new study suggests that EBs recognize microtubule ends by distinguishing between different states of the tubulin-bound guanine nucleotide.  相似文献   

3.
Adenomatous polyposis coli protein (APC) is a well-characterized tumor suppressor protein [1] [2] [3]. We previously showed that APC tagged with green fluorescent protein (GFP) in Xenopus A6 epithelial cells moves along a subset of microtubules and accumulates at their growing plus ends in cell extensions [4]. EB1, which was identified as an APC-binding protein by yeast two-hybrid analysis [5], was also reported to be associated with microtubules [6] [7] [8]. To examine the interaction between APC and EB1 within cells, we compared the dynamic behavior of EB1-GFP with that of APC-GFP in A6 transfectants. Time-lapse microscopy of live cells at interphase revealed that EB1-GFP was concentrated at all of the growing microtubule ends throughout the cytoplasm and abruptly disappeared from the ends when microtubules began to shorten. Therefore, EB1 appeared to be co-localized and interact with APC on the growing ends of a subset of microtubules. When APC-GFP was overexpressed, endogenous EB1 was recruited to APC-GFP, which accumulated in large amounts on microtubules. On the other hand, when microtubules were disassembled by nocodazole, EB1 was not co-localized with APC-GFP, which was concentrated along the basal plasma membrane. During mitosis, APC appeared to be dissociated from microtubules, whereas EB1-GFP continued to concentrate at microtubule growing ends. These findings showed that the APC-EB1 interaction is regulated within cells and is allowed near the ends of microtubules only under restricted conditions.  相似文献   

4.
Plus-end-tracking proteins (+TIPs) are localized at the fast-growing, or plus end, of microtubules, and link microtubule ends to cellular structures. One of the best studied +TIPs is EB1, which forms comet-like structures at the tips of growing microtubules. The molecular mechanisms by which EB1 recognizes and tracks growing microtubule ends are largely unknown. However, one clue is that EB1 can bind directly to a microtubule end in the absence of other proteins. Here we use an in vitro assay for dynamic microtubule growth with two-color total-internal-reflection-fluorescence imaging to investigate binding of mammalian EB1 to both stabilized and dynamic microtubules. We find that under conditions of microtubule growth, EB1 not only tip tracks, as previously shown, but also preferentially recognizes the GMPCPP microtubule lattice as opposed to the GDP lattice. The interaction of EB1 with the GMPCPP microtubule lattice depends on the E-hook of tubulin, as well as the amount of salt in solution. The ability to distinguish different nucleotide states of tubulin in microtubule lattice may contribute to the end-tracking mechanism of EB1.  相似文献   

5.
The tumour suppressor gene adenomatous polyposis coli (APC) is mutated in sporadic and familial colorectal tumours. APC is involved in the proteasome-mediated degradation of beta-catenin, through its interaction with beta-catenin, GSK-3 beta and Axin. APC also interacts with the microtubule cytoskeleton and has been localized to clusters near the distal ends of microtubules at the edges of migrating epithelial cells. Moreover, in Xenopus laevis epithelial cells, APC has been shown to move along microtubules and accumulate at their growing plus ends. However, the mechanism of APC accumulation and the nature of these APC clusters remain unknown. We show here that APC interacts with the kinesin superfamily (KIF) 3A-KIF3B proteins, microtubule plus-end-directed motor proteins, through an association with the kinesin superfamily-associated protein 3 (KAP3). The interaction of APC with KAP3 was required for its accumulation in clusters, and mutant APCs derived from cancer cells were unable to accumulate efficiently in clusters. These results suggest that APC and beta-catenin are transported along microtubules by KAP3-KIF3A-KIF3B, accumulate in the tips of membrane protrusions, and may thus regulate cell migration.  相似文献   

6.
Microtubule plus-end proteins CLIP-170 and EB1 dynamically track the tips of growing microtubules in vivo. Here we examine the association of these proteins with microtubules in vitro. CLIP-170 binds tubulin dimers and co-assembles into growing microtubules. EB1 binds tubulin dimers more weakly, so no co-assembly is observed. However, EB1 binds to CLIP-170, and forms a co-complex with CLIP-170 and tubulin that is recruited to growing microtubule plus ends. The interaction between CLIP-170 and EB1 is competitively inhibited by the related CAP-Gly protein p150Glued, which also localizes to microtubule plus ends in vivo. Based on these observations, we propose a model in which the formation of distinct plus-end complexes may differentially affect microtubule dynamics in vivo.  相似文献   

7.
Recently, the EB1 and XMAP215/TOG families of microtubule binding proteins have been demonstrated to bind autonomously to the growing plus ends of microtubules and regulate their behaviour in in vitro systems. However, their functional redundancy or difference in cells remains obscure. Here, we compared the nanoscale distributions of EB1 and ch-TOG along microtubules using high-resolution microscopy techniques, and also their roles in microtubule organisation in interphase HeLa cells. The ch-TOG accumulation sites protruded ∼100 nm from the EB1 comets. Overexpression experiments showed that ch-TOG and EB1 did not interfere with each other’s localisation, confirming that they recognise distinct regions at the ends of microtubules. While both EB1 and ch-TOG showed similar effects on microtubule plus end dynamics and additively increased microtubule dynamicity, only EB1 exhibited microtubule-cell cortex attachment activity. These observations indicate that EB1 and ch-TOG regulate microtubule organisation differently via distinct regions in the plus ends of microtubules.  相似文献   

8.
A microtubule network on the basal cortex of polarized epithelial cells consists of non-centrosomal microtubules of mixed polarity. Here, we investigate the proteins that are involved in organizing this network, and we show that end-binding protein 1 (EB1), adenomatous polyposis coli protein (APC) and p150Glued - although considered to be microtubule plus-end-binding proteins - are localized along the entire length of microtubules within the network, and at T-junctions between microtubules. The network shows microtubule behaviours that arise from physical interactions between microtubules, including microtubule plus-end stabilization on the sides of other microtubules, and sliding of microtubule ends along other microtubules. APC also localizes to the basal cortex. Microtubules grew over and paused at APC puncta; an in vitro reconstituted microtubule network overlaid APC puncta; and microtubule network reconstitution was inhibited by function-blocking APC antibodies. Thus, APC is a component of a cortical template that guides microtubule network formation.  相似文献   

9.
BACKGROUND: CLIP-170 and EB1 protein family members localize to growing microtubule tips and link spatial information with the control of microtubule dynamics. It is unknown whether these proteins operate independently or whether their actions are coordinated. In fission yeast the CLIP-170 homolog tip1p is required for targeting of microtubules to cell ends, whereas the role of the EB1 homolog mal3p in microtubule organization has not been investigated. RESULTS: We show that mal3p promotes the initiation of microtubule growth and inhibits catastrophes. Premature catastrophes occur randomly throughout the cell in the absence of mal3p. mal3p decorates the entire microtubule lattice and localizes to particles along the microtubules and at their growing tips. Particles move in two directions, outbound toward the cell ends or inbound toward the cell center. At cell ends, the microtubule tip-associated mal3p particles disappear followed by a catastrophe. mal3p localizes normally in tip1-deleted cells and disappears from microtubule tips preceding the premature catastrophes. In contrast, tip1p requires mal3p to localize at microtubule tips. mal3p and tip1p directly interact in vitro. CONCLUSIONS: mal3p and tip1p form a system allowing microtubules to target cell ends. We propose that mal3p stimulates growth initiation and maintains growth by suppressing catastrophes. At cell ends, mal3p disappears from microtubule tips followed by a catastrophe. mal3p is involved in recruiting tip1p to microtubule tips. This becomes important when microtubules contact the cell cortex outside the cell ends because mal3p dissociates prematurely without tip1p, which is followed by a premature catastrophe.  相似文献   

10.
The positioning of growth sites in fission yeast cells is mediated by spatially controlled microtubule dynamics brought about by tip1p, a CLIP-170-like protein, which is localized at the microtubule tips and guides them to the cell ends. The kinesin tea2p is also located at microtubule tips and affects microtubule dynamics. Here we show that tea2p interacts with tip1p and that the two proteins move with high velocity along the microtubules toward their growing tips. There, tea2p and tip1p accumulate in larger particles. Particle formation requires the EB1 homolog, mal3p. Our results suggest a model in which kinesins regulate microtubule growth by transporting regulatory factors such as tip1p to the growing microtubule tips.  相似文献   

11.
End-binding proteins (EBs) comprise a conserved family of microtubule plus end-tracking proteins. The concerted action of calponin homology (CH), linker, and C-terminal domains of EBs is important for their autonomous microtubule tip tracking, regulation of microtubule dynamics, and recruitment of numerous partners to microtubule ends. Here we report the detailed structural and biochemical analysis of mammalian EBs. Small-angle X-ray scattering, electron microscopy, and chemical cross-linking in combination with mass spectrometry indicate that EBs are elongated molecules with two interacting CH domains, an arrangement reminiscent of that seen in other microtubule- and actin-binding proteins. Removal of the negatively charged C-terminal tail did not affect the overall conformation of EBs; however, it increased the dwell times of EBs on the microtubule lattice in microtubule tip-tracking reconstitution experiments. An even more stable association with the microtubule lattice was observed when the entire negatively charged C-terminal domain of EBs was replaced by a neutral coiled-coil motif. In contrast, the interaction of EBs with growing microtubule tips was not significantly affected by these C-terminal domain mutations. Our data indicate that long-range electrostatic repulsive interactions between the C-terminus and the microtubule lattice drive the specificity of EBs for growing microtubule ends.  相似文献   

12.
Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.  相似文献   

13.
Maurer SP  Fourniol FJ  Bohner G  Moores CA  Surrey T 《Cell》2012,149(2):371-382
Growing microtubule ends serve as transient binding platforms for essential proteins that regulate microtubule dynamics and their interactions with cellular substructures. End-binding proteins (EBs) autonomously recognize an extended region at growing microtubule ends with unknown structural characteristics and then recruit other factors to the dynamic end structure. Using cryo-electron microscopy, subnanometer single-particle reconstruction, and fluorescence imaging, we present a pseudoatomic model of how the calponin homology (CH) domain of the fission yeast EB Mal3 binds to the end regions?of growing microtubules. The Mal3 CH domain bridges protofilaments except at the microtubule seam. By binding close to the exchangeable GTP-binding site, the CH domain is ideally positioned to sense the microtubule's nucleotide state. The same microtubule-end region is also a stabilizing structural cap protecting the microtubule from depolymerization. This insight supports a common structural link between two important biological phenomena, microtubule dynamic instability and end tracking.  相似文献   

14.
Mutations in cdk5rap2 are linked to autosomal recessive primary microcephaly, and attention has been paid to its function at centrosomes. In this report, we demonstrate that CDK5RAP2 localizes to microtubules and concentrates at the distal tips in addition to centrosomal localization. CDK5RAP2 interacts directly with EB1, a prototypic member of microtubule plus-end tracking proteins, and contains the basic and Ser-rich motif responsible for EB1 binding. The EB1-binding motif is conserved in the CDK5RAP2 sequences of chimpanzee, bovine, and dog but not in those of rat and mouse, suggesting a function gained during the evolution of mammals. The mutation of the Ile/Leu-Pro dipeptide within the motif abolishes EB1 interaction and plus-end attachment. In agreement with the mutational analysis, suppression of EB1 expression inhibits microtubule tip-tracking of CDK5RAP2. We have also found that the CDK5RAP2–EB1 complex regulates microtubule dynamics and stability. CDK5RAP2 depletion by RNA interference impacts the dynamic behaviors of microtubules. The CDK5RAP2–EB1 complex induces microtubule bundling and acetylation when expressed in cell cultures and stimulates microtubule assembly and bundle formation in vitro. Collectively, these results show that CDK5RAP2 targets growing microtubule tips in association with EB1 to regulate microtubule dynamics.  相似文献   

15.
The ends of growing microtubules (MTs) accumulate a set of diverse factors known as MT plus end-tracking proteins (+TIPs), which control microtubule dynamics and organization. In this paper, we identify SLAIN2 as a key component of +TIP interaction networks. We showed that the C-terminal part of SLAIN2 bound to end-binding proteins (EBs), cytoplasmic linker proteins (CLIPs), and CLIP-associated proteins and characterized in detail the interaction of SLAIN2 with EB1 and CLIP-170. Furthermore, we found that the N-terminal part of SLAIN2 interacted with ch-TOG, the mammalian homologue of the MT polymerase XMAP215. Through its multiple interactions, SLAIN2 enhanced ch-TOG accumulation at MT plus ends and, as a consequence, strongly stimulated processive MT polymerization in interphase cells. Depletion or disruption of the SLAIN2-ch-TOG complex led to disorganization of the radial MT array. During mitosis, SLAIN2 became highly phosphorylated, and its interaction with EBs and ch-TOG was inhibited. Our study provides new insights into the molecular mechanisms underlying cell cycle-specific regulation of MT polymerization and the organization of the MT network.  相似文献   

16.
EB1 targets to polymerizing microtubule ends, where it is favorably positioned to regulate microtubule polymerization and confer molecular recognition of the microtubule end. In this study, we focus on two aspects of the EB1-microtubule interaction: regulation of microtubule dynamics by EB1 and the mechanism of EB1 association with microtubules. Immunodepletion of EB1 from cytostatic factor-arrested M-phase Xenopus egg extracts dramatically reduced microtubule length; this was complemented by readdition of EB1. By time-lapse microscopy, EB1 increased the frequency of microtubule rescues and decreased catastrophes, resulting in increased polymerization and decreased depolymerization and pausing. Imaging of EB1 fluorescence revealed a novel structure: filamentous extensions on microtubule plus ends that appeared during microtubule pauses; loss of these extensions correlated with the abrupt onset of polymerization. Fluorescent EB1 localized to comets at the polymerizing plus ends of microtubules in cytostatic factor extracts and uniformly along the lengths of microtubules in interphase extracts. The temporal decay of EB1 fluorescence from polymerizing microtubule plus ends predicted a dissociation half-life of seconds. Fluorescence recovery after photobleaching also revealed dissociation and rebinding of EB1 to the microtubule wall with a similar half-life. EB1 targeting to microtubules is thus described by a combination of higher affinity binding to polymerizing ends and lower affinity binding along the wall, with continuous dissociation. The latter is likely to be attenuated in interphase. The highly conserved effect of EB1 on microtubule dynamics suggests it belongs to a core set of regulatory factors conserved in higher organisms, and the complex pattern of EB1 targeting to microtubules could be exploited by the cell for coordinating microtubule behaviors.  相似文献   

17.
Nakamura M  Zhou XZ  Lu KP 《Current biology : CB》2001,11(13):1062-1067
Human EB1 was originally cloned as a protein that interacts with the COOH terminus of adenomatous polyposis coli (APC). Interestingly, this interaction is often disrupted in colon cancer, due to mutations in APC. EB1 also interacts with the plus-ends of microtubules and targets APC to microtubule tips. Since APC is detected on the kinetochores of chromosomes, it has been hypothesized that the EB1-APC interaction connects microtubule spindles to the kinetochores and regulates microtubule stability. In yeast, EB1 regulates microtubule dynamics, and its binding domain in APC may be conserved in Kar9, an EB1 binding protein involved in the microtubule-capturing mechanism. These results suggest that the interaction of EB1 and APC is important and may be conserved. However, it is largely unknown whether the EB1-APC interaction affects microtubule dynamics. Here, we show that EB1 potently promotes microtubule polymerization in vitro and in permeabilized cells, but, surprisingly, only in the presence of the COOH-terminal EB1 binding domain of APC (C-APC). Significantly, this C-APC activity is abolished by phosphorylation, which also disrupts its ability to bind to EB1. Furthermore, yeast EB1 protein effectively substitutes for the human protein but also requires C-APC in promoting microtubule polymerization. Finally, C-APC is able to promote microtubule polymerization when stably expressed in APC mutant cells, demonstrating the ability of C-APC to promote microtubule assembly in vivo. Thus, the interaction between EB1 and APC plays an essential role in the regulation of microtubule polymerization, and a similar mechanism may be conserved in yeast.  相似文献   

18.
EB1 is key factor in the organization of the microtubule cytoskeleton by binding to the plus-ends of microtubules and serving as a platform for a number of interacting proteins (termed +TIPs) that control microtubule dynamics. Together with its direct binding partner adenomatous polyposis coli (APC), EB1 can stabilize microtubules. Here, we show that Amer2 (APC membrane recruitment 2), a previously identified membrane-associated APC-binding protein, is a direct interaction partner of EB1 and acts as regulator of microtubule stability together with EB1. Amer2 binds to EB1 via specific (S/T)xIP motifs and recruits it to the plasma membrane. Coexpression of Amer2 and EB1 generates stabilized microtubules at the plasma membrane, whereas knockdown of Amer2 leads to destabilization of microtubules. Knockdown of Amer2, APC, or EB1 reduces cell migration, and morpholino-mediated down-regulation of Xenopus Amer2 blocks convergent extension cell movements, suggesting that the Amer2-EB1-APC complex regulates cell migration by altering microtubule stability.  相似文献   

19.
Cell migration is a fundamental cellular process requiring integrated activities of the cytoskeleton, membrane, and cell/extracellular matrix adhesions. Many cytoskeletal activities rely on microtubule filaments. It has been speculated that microtubules can serve as tracks to deliver proteins essential for focal adhesion turnover. Three microtubule end-binding proteins (EB1, EB2, and EB3) in mammalian cells can track the plus ends of growing microtubules. EB1 and EB3 together can regulate microtubule dynamics by promoting microtubule growth and suppressing catastrophe, whereas, in contrast, EB2 does not play a direct role in microtubule dynamic instability, and little is known about the cellular function of EB2. By quantitative proteomics, we identified mammalian HCLS1-associated protein X-1 (HAX1) as an EB2-specific interacting protein. Knockdown of HAX1 and EB2 in skin epidermal cells stabilizes focal adhesions and impairs epidermal migration in vitro and in vivo. Our results further demonstrate that cell motility and focal adhesion turnover require interaction between Hax1 and EB2. Together, our findings provide new insights for this critical cellular process, suggesting that EB2 association with Hax1 plays a significant role in focal adhesion turnover and epidermal migration.  相似文献   

20.
Microtubule plus ends are dynamically regulated by a wide variety of proteins for performing diverse cellular functions. Here, we show that the fission yeast Schizosaccharomyces pombe uncharacterized protein mcp1p is a microtubule plus-end tracking protein which depends on the kinesin-8 klp6p for transporting along microtubules towards microtubule plus ends. In the absence of mcp1p, microtubule catastrophe and rescue frequencies decrease, leading to an increased dwell time of microtubule plus ends at cell tips. Thus, these findings suggest that mcp1p may synergize with klp6p at microtubule plus-ends to destabilize microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号