首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The APOBEC3 proteins are unique to mammals. Many inhibit retrovirus infection through a cDNA cytosine deamination mechanism. HIV-1 neutralizes this host defense through Vif, which triggers APOBEC3 ubiquitination and degradation. Here, we report an APOBEC3F-like, double deaminase domain protein from three artiodactyls: cattle, pigs and sheep. Like their human counterparts, APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins are DNA cytosine deaminases that locate predominantly to the cytosol and can inhibit the replication of HIV-1 and MLV. Retrovirus restriction is attributable to deaminase-dependent and -independent mechanisms, as deaminase-defective mutants retain significant anti-retroviral activity. However, unlike human APOBEC3F and APOBEC3G, the artiodactyl APOBEC3F proteins have an active N-terminal DNA cytosine deaminase domain, which elicits a broader dinucleotide deamination preference, and they are resistant to HIV-1 Vif. These data indicate that DNA cytosine deamination; sub-cellular localization and retrovirus restriction activities are conserved in mammals, whereas active site location, local mutational preferences and Vif susceptibility are not. Together, these studies indicate that some properties of the mammal-specific, APOBEC3-dependent retroelement restriction system are necessary and conserved, but others are simultaneously modular and highly adaptable.  相似文献   

2.
3.
Human APOBEC3G and several other APOBEC3 proteins have been shown to inhibit the replication of a variety of retrotransposons and retroviruses. All of these enzymes can deaminate cytosines within single-strand DNA, but the overall importance of this conserved activity in retroelement restriction has been questioned by reports of deaminase-independent mechanisms. Here, three distinct retroelements, a yeast retrotransposon, Ty1, a murine endogenous retrovirus, MusD, and a lentivirus, human immunodeficiency virus type 1 (HIV-1), were used to evaluate the relative contributions of deaminase-dependent and -independent mechanisms. Although human APOBEC3G can restrict the replication of all three of these retroelements, APOBEC3G lacking the catalytic glutamate (E259Q) was clearly defective. This phenotype was particularly clear in experiments with low levels of APOBEC3G expression. In contrast, purposeful overexpression of APOBEC3G-E259Q was able to cause modest to severe reductions in the replication of Ty1, MusD, and HIV-1(ΔVif). The importance of these observations was highlighted by data showing that CEM-SS T-cell lines expressing near-physiologic levels of APOBEC3G-E259Q failed to inhibit the replication of HIV-1(ΔVif), whereas similar levels of wild-type APOBEC3G fully suppressed virus infectivity. Despite the requirement for DNA deamination, uracil DNA glycosylase did not modulate APOBEC3G-dependent restriction of Ty1 or HIV-1(ΔVif), further supporting prior studies indicating that the major uracil excision repair system of cells is not involved. In conclusion, the absolute requirement for the catalytic glutamate of APOBEC3G in Ty1, MusD, and HIV-1 restriction strongly indicates that DNA cytosine deamination is an essential part of the mechanism.  相似文献   

4.
APOBEC3G is a retroviral restriction factor that can inhibit the replication of human immunodeficiency virus, type 1 (HIV-1) in the absence of the viral infectivity factor (Vif) protein. Virion-encapsidated APOBEC3G can deaminate cytosine to uracil in viral (−)DNA, which leads to hypermutation and inactivation of the provirus. APOBEC3G catalyzes these deaminations processively on single-stranded DNA using sliding and jumping movements. Vif is thought to primarily overcome APOBEC3G through an interaction that mediates APOBEC3G ubiquitination and results in its proteasomal degradation. However, Vif may also inhibit APOBEC3G mRNA translation, virion encapsidation, and deamination activity. Here we investigated the molecular mechanism of VifIIIB- and VifHXB2-mediated inhibition of APOBEC3G deamination activity. Biochemical assays using a model HIV-1 replication assay and synthetic single-stranded or partially double-stranded DNA substrates demonstrated that APOBEC3G has an altered processive mechanism in the presence of Vif. Specifically, VifHXB2 inhibited the jumping and VifIIIB inhibited the sliding movements of APOBEC3G. The absence of such an effect by Vif on degradation-resistant APOBEC3G D128K indicates that a Vif-APOBEC3G interaction mediates this effect. That the partially processive APOBEC3G was less effective at inducing mutagenesis in a model HIV-1 replication assay suggests that Vif co-encapsidation with APOBEC3G can promote sublethal mutagenesis of HIV-1 proviral DNA.  相似文献   

5.
Human APOBEC3F and APOBEC3G are double-domained deaminases that can catalyze dC→dU deamination in HIV-1 and MLV retroviral DNA replication intermediates, targeting T–C or C–C dinucleotides, respectively. HIV-1 antagonizes their action through its vif gene product, which has been shown (at least in the case of APOBEC3G) to interact with the N-terminal domain of the deaminase, triggering its degradation. Here, we compare APOBEC3F and APOBEC3G to APOBEC3C, a single-domained deaminase that can also act on both HIV-1 and MLV. We find that whereas APOBEC3C contains all the information necessary for both Vif-binding and cytidine deaminase activity in a single domain, it is the C-terminal domain of APOBEC3F and APOBEC3G that confer their target site specificity for cytidine deamination. We have exploited the fact that APOBEC3C, whilst highly homologous to the C-terminal domain of APOBEC3F, exhibits a distinct target site specificity (preferring Y–C dinucleotides) in order to identify residues in APOBEC3F that might affect its target site specificity. We find that this specificity can be altered by single amino acid substitutions at several distinct positions, suggesting that the strong dependence of APOBEC3-mediated deoxycytidine deamination on the 5′-flanking nucleotide is sensitive to relatively subtle changes in the APOBEC3 structure. The approach has allowed the isolation of APOBEC3 DNA mutators that exhibit novel target site preferences.  相似文献   

6.
APOBEC3A and APOBEC3G are DNA cytosine deaminases with biological functions in foreign DNA and retrovirus restriction, respectively. APOBEC3A has an intrinsic preference for cytosine preceded by thymine (5′-TC) in single-stranded DNA substrates, whereas APOBEC3G prefers the target cytosine to be preceded by another cytosine (5′-CC). To determine the amino acids responsible for these strong dinucleotide preferences, we analyzed a series of chimeras in which putative DNA binding loop regions of APOBEC3G were replaced with the corresponding regions from APOBEC3A. Loop 3 replacement enhanced APOBEC3G catalytic activity but did not alter its intrinsic 5′-CC dinucleotide substrate preference. Loop 7 replacement caused APOBEC3G to become APOBEC3A-like and strongly prefer 5′-TC substrates. Simultaneous loop 3/7 replacement resulted in a hyperactive APOBEC3G variant that also preferred 5′-TC dinucleotides. Single amino acid exchanges revealed D317 as a critical determinant of dinucleotide substrate specificity. Multi-copy explicitly solvated all-atom molecular dynamics simulations suggested a model in which D317 acts as a helix-capping residue by constraining the mobility of loop 7, forming a novel binding pocket that favorably accommodates cytosine. All catalytically active APOBEC3G variants, regardless of dinucleotide preference, retained human immunodeficiency virus type 1 restriction activity. These data support a model in which the loop 7 region governs the selection of local dinucleotide substrates for deamination but is unlikely to be part of the higher level targeting mechanisms that direct these enzymes to biological substrates such as human immunodeficiency virus type 1 cDNA.  相似文献   

7.
8.
9.
The human APOBEC3 family of DNA-cytosine deaminases comprises 7 members (A3A-A3H) that act on single-stranded DNA (ssDNA). The APOBEC3 proteins function within the innate immune system by mutating DNA of viral genomes and retroelements to restrict infection and retrotransposition. Recent evidence suggests that APOBEC3 enzymes can also cause damage to the cellular genome. Mutational patterns consistent with APOBEC3 activity have been identified by bioinformatic analysis of tumor genome sequences. These mutational signatures include clusters of base substitutions that are proposed to occur due to APOBEC3 deamination. It has been suggested that transiently exposed ssDNA segments provide substrate for APOBEC3 deamination leading to mutation signatures within the genome. However, the mechanisms that produce single-stranded substrates for APOBEC3 deamination in mammalian cells have not been demonstrated. We investigated ssDNA at replication forks as a substrate for APOBEC3 deamination. We found that APOBEC3A (A3A) expression leads to DNA damage in replicating cells but this is reduced in quiescent cells. Upon A3A expression, cycling cells activate the DNA replication checkpoint and undergo cell cycle arrest. Additionally, we find that replication stress leaves cells vulnerable to A3A-induced DNA damage. We propose a model to explain A3A-induced damage to the cellular genome in which cytosine deamination at replication forks and other ssDNA substrates results in mutations and DNA breaks. This model highlights the risk of mutagenesis by A3A expression in replicating progenitor cells, and supports the emerging hypothesis that APOBEC3 enzymes contribute to genome instability in human tumors.  相似文献   

10.
The most common transposable genetic element in humans, long interspersed element 1 (L1), constitutes about 20% of the genome. The activity of L1 and related transposons such as Alu elements causes disease and contributes to speciation. Little is known about the cellular mechanisms that control their spread. We show that expression of human APOBEC3B or APOBEC3F decreased the rate of L1 retrotransposition by 5-10-fold. Expression of two related proteins, APOBEC3D or APOBEC3G, had little effect. The mechanism of L1 inhibition did not correlate with an obvious subcellular protein distribution as APOBEC3B appeared predominantly nuclear and APOBEC3F was mostly cytosolic. Two lines of evidence indicated that these APOBEC3 proteins use a deamination-independent mechanism to inhibit L1. First, a catalytically inactive APOBEC3B mutant maintained L1 inhibition activity. Second, cDNA strand-specific C --> T hypermutations were not detected among L1 elements that had replicated in the presence of APOBEC3B or APOBEC3F. In addition, lower levels of retrotransposed L1 DNA accumulated in the presence of APOBEC3B and APOBEC3F. Together, these data combined to suggest a model in which APOBEC3B or APOBEC3F provide a preintegration barrier to L1 retrotransposition. A particularly high level of APOBEC3F protein in human testes and an inverse correlation between L1 activity and APOBEC3 gene number suggest the relevance of this mechanism to mammals.  相似文献   

11.
12.
The APOBEC3 family of cytosine deaminases are part of the innate immune response to viral infection, but also have the capacity to damage cellular DNA. Detection of mutational signatures consistent with APOBEC3 activity, together with elevated APOBEC3 expression in cancer cells, has raised the possibility that these enzymes contribute to oncogenesis. Genome deamination by APOBEC3 enzymes also elicits DNA damage response signaling and presents therapeutic vulnerabilities for cancer cells. Here, we discuss implications of APOBEC3 activity in cancer and the potential to exploit their mutagenic activity for targeted cancer therapies.  相似文献   

13.
Apolipoprotein B-editing complex catalytic subunit 1 (APOBEC1) is the catalytic component of an RNA-editing complex that deaminates C6666 --> U in apolipoprotein B RNA in gastrointestinal tissue, thereby generating a premature stop codon. Whereas RNA is the physiological substrate of APOBEC1, recent experiments have strongly indicated that, when expressed in bacteria, APOBEC1 and some of its homologues can deaminate cytosine in DNA. Indeed, genetic evidence demonstrates that the physiological function of activation-induced deaminase, a B lymphocyte-specific APOBEC1 homologue, is to perform targeted deamination of cytosine within the immunoglobulin locus, thereby triggering antibody gene diversification. However, biochemical evidence of in vitro DNA deamination by members of the APOBEC family is still needed. Here, we show that deamination of cytosine to uracil in DNA can be achieved in vitro using partially purified APOBEC1 from extracts of transformed Escherichia coli. Thus, APOBEC1 can deaminate cytosine in both RNA and DNA. Strikingly, its activity on DNA is specific for single-stranded DNA and exhibits dependence on local sequence context.  相似文献   

14.
15.
The HIV-1 Vif protein counteracts the antiviral activity exhibited by the host cytidine deaminases APOBEC3G and APOBEC3F. Here, we show that defective vif alleles can readily be found in HIV-1 isolates and infected patients. Single residue changes in the Vif protein sequence are sufficient to cause the loss of Vif-induced APOBEC3 neutralization. Interestingly, not all the detected defects lead to a complete inactivation of Vif function since some mutants retained selective neutralizing activity against APOBEC3F but not APOBEC3G or vice versa. Concordantly, independently hypermutated proviruses with distinguishable patterns of G-to-A substitution attributable to cytidine deamination induced by APOBEC3G, APOBEC3F, or both enzymes were present in individuals carrying proviruses with completely or partly defective Vif variants. Natural variation in Vif function may result in selective and partial neutralization of cytidine deaminases and thereby promote viral sequence diversification within HIV-1 infected individuals.  相似文献   

16.
The beneficial effects of DNA cytidine deamination by activation-induced deaminase (AID; antibody gene diversification) and APOBEC3G (retrovirus restriction) are tempered by probable contributions to carcinogenesis. Multiple regulatory mechanisms serve to minimize this detrimental outcome. Here, we show that phosphorylation of a conserved threonine attenuates the intrinsic activity of activation-induced deaminase (Thr-27) and APOBEC3G (Thr-218). Phospho-null alanine mutants maintain intrinsic DNA deaminase activity, whereas phospho-mimetic glutamate mutants are inactive. The phospho-mimetic variants fail to mediate isotype switching in activated mouse splenic B lymphocytes or suppress HIV-1 replication in human T cells. Our data combine to suggest a model in which this critical threonine acts as a phospho-switch that fine-tunes the adaptive and innate immune responses and helps protect mammalian genomic DNA from procarcinogenic lesions.  相似文献   

17.
18.
The human proteins APOBEC3F and APOBEC3G restrict retroviral infection by deaminating cytosine residues in the first cDNA strand of a replicating virus. These proteins have two putative deaminase domains, and it is unclear whether one or both catalyze deamination, unlike their homologs, AID and APOBEC1, which are well characterized single domain deaminases. Here, we show that only the C-terminal cytosine deaminase domain of APOBEC3F and -3G governs retroviral hypermutation. A chimeric protein with the N-terminal cytosine deaminase domain from APOBEC3G and the C-terminal cytosine deaminase domain from APOBEC3F elicited a dinucleotide hypermutation preference nearly indistinguishable from that of APOBEC3F. This 5'-TC-->TT mutational specificity was confirmed in a heterologous Escherichia coli-based mutation assay, in which the 5'-CC-->CT dinucleotide hypermutation preference of APOBEC3G also mapped to the C-terminal deaminase domain. An N-terminal APOBEC3G deletion mutant displayed a preference indistinguishable from that of the full-length protein, and replacing the C-terminal deaminase domain of APOBEC3F with AID resulted in an AID-like mutational signature. Together, these data indicate that only the C-terminal domain of APOBEC3F and -3G dictates the retroviral minus strand 5'-TC and 5'-CC dinucleotide hypermutation preferences, respectively, leaving the N-terminal domain to perform other aspects of retroviral restriction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号