首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Glaucoma is one of the leading causes of irreversible blindness that is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino-acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs, and the loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP). Brimonidine (BMD) is an α2-adrenergic receptor agonist and it is commonly used in a form of eye drops to lower IOP in glaucoma patients. Recent studies have suggested that BMD has direct protective effects on RGCs involving IOP-independent mechanisms, but it is still controversial. In the present study, we examined the effects of BMD in EAAC1-deficient (KO) mice, an animal model of normal tension glaucoma. BMD caused a small decrease in IOP, but sequential in vivo retinal imaging and electrophysiological analysis revealed that treatment with BMD was highly effective for RGC protection in EAAC1 KO mice. BMD suppressed the phosphorylation of the N-methyl-D-aspartate receptor 2B (NR2B) subunit in RGCs in EAAC1 KO mice. Furthermore, in cultured Müller glia, BMD stimulated the production of several neurotrophic factors that enhance RGC survival. These results suggest that, in addition to lowering IOP, BMD prevents glaucomatous retinal degeneration by stimulating multiple pathways including glia–neuron interactions.Glaucoma is one of the leading causes of vision loss in the world. It is estimated that glaucoma will affect more than 80 million individuals worldwide by 2020, with at least 6–8 million individuals becoming bilaterally blind.1 The disease is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, which are usually associated with elevated intraocular pressure (IOP). On the other hand, normal tension glaucoma (NTG) is a subtype of glaucoma that presents with statistically normal IOP. The prevalence of NTG is reported to be higher among the Japanese than among Caucasians.2 These findings suggest a possibility that non-IOP-dependent factors may contribute to disease progression of glaucoma, especially in the context of NTG.3, 4 For example, an excessively high extracellular concentration of glutamate chronically activates glutamate receptors, such as N-methyl-D-aspartate (NMDA) receptors, and allows calcium entry into the cell causing an uncontrolled elevation of intracellular calcium levels. This process is thought to be one of the causes of RGC death.3, 4, 5 The glutamate transporter (GLT) is the only mechanism for removal of glutamate from the extracellular fluid in the retina.3, 6, 7 In the inner plexiform layer where synapses exist across RGCs, at least three transporters are involved in this task: GLT-1 located in the bipolar cell terminals; excitatory amino-acid carrier 1 (EAAC1) in RGCs; and glutamate/aspartate transporter (GLAST) in Müller glial cells.3, 7, 8 We previously reported that EAAC1 and GLAST knockout (KO) mice show progressive RGC loss and optic nerve degeneration without elevated IOP, and not only glutamate neurotoxicity but also oxidative stress is involved in its mechanism.3, 8, 9, 10 In adult EAAC1 and GLAST KO mice, lipid hydroperoxides were increased and glutathione concentrations were decreased in retinas, suggesting the involvement of oxidative stress in RGC loss. In addition, cultured RGCs prepared from EAAC1 KO mice were more vulnerable to oxidative stress.3 Oxidative stress has been proposed to contribute to retinal damage in various eye diseases including glaucoma and age-related macular degeneration.11, 12 Taken together with the downregulation of GLTs and glutathione levels observed in glaucoma patients,13 these mice seem to be useful as the animal models of NTG.Brimonidine (BMD) is a selective α2-adrenergic receptor agonist that lowers IOP by reducing the production of aqueous humor and facilitating its exit via the trabecular meshwork.14 Recent studies have shown that BMD protects RGCs from glutamate neurotoxicity, oxidative stress and hypoxia in vitro.15, 16 In addition, BMD provides neuroprotective effects in various animal models of optic neuropathy including experimental glaucoma, ischemia, oxidative stress and optic nerve injury.17, 18, 19 BMD may exert its neuroprotective effects via the upregulation of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF)20 and basic fibroblast growth factor (bFGF),21, 22 in RGCs. Thus, the neuroprotective effects of BMD seem to be, at least partly, through IOP-independent factors, but the detailed mechanism are still unknown. Fujita et al.23 recently reported that topical administration of BMD promotes axon regeneration after optic nerve injury. BMD increased the expression of the tropomyosin receptor kinase B (TrkB), a high-affinity BDNF receptor, in the mouse retina. We previously reported that BDNF-TrkB signaling in Müller glial cells have important roles in the production of trophic factors including BDNF and bFGF, and in the protection from glutamate-induced RGC death and drug-induced photoreceptor death.24 Systemically administered α2-adrenergic agonists are known to activate selectively extracellular signal-regulated kinases in Müller cells in vivo.25 These results suggest a possibility that BMD may stimulate the production of trophic factors in not only RGCs but also in Müller cells. In the present study, we show that BMD prevents glaucomatous retinal degeneration in EAAC1 KO mice, an animal model of NTG, and we report novel IOP-independent pathways for BMD-mediated neuroprotection that involve NMDA receptors and glia–neuron interaction.  相似文献   

4.
Cellular events responsible for the initiation of major neurodegenerative disorders of the eye leading to blindness, including age-related macular degeneration, Stargardt and Best diseases, are poorly understood. Accumulation of vitamin A dimers, such as N-retinylidene-N-retinylethanolamine (A2E) in the retinal pigment epithelium (RPE), is one of the earliest measurable events preceding retinal degeneration. However, the extent to which these dimers contribute to tissue degeneration is not clear. To determine if A2E could trigger morphological changes associated with the degenerating RPE and subsequent cell death, we evaluated its toxicity to cultured human RPE cells (ARPE-19). We show that A2E triggered the accumulation of debris followed by a protracted death. A2E was up to≈14-fold more toxic than its precursor, retinaldehyde. Measurements reveal that the concentration of A2E in the aged human eye could exceed the concentration of all other retinoids, opening the possibility of A2E-triggered cell death by several reported mechanisms. Findings suggest that accumulation of vitamin A dimers such as A2E in the human eye might be responsible for the formation of ubiquitous RPE debris, an early indication of retinal degeneration, and that preventing or reducing the accumulation of vitamin A dimers is a prudent strategy to prevent blindness.The elucidation of environmental and genetic drivers of RPE senescence has been a persistent goal toward understanding and preventing degenerative disease of the retina. Since their structural elucidation in the 1990s, dimers of dietary vitamin A, in particular N-retinylidene-N-retinylethanolamine (A2E), have been postulated as chemical triggers, driving retinal senescence and associated degeneration. The eye uses vitamin A as a cofactor to sense light. A striking chemical signature of the aging and degenerating retina is the accumulation of vitamin A dimers in the retinal pigment epithelium (RPE)1, 2 and underlying Bruch''s membrane.3 In rodent models of macular degeneration,4, 5, 6, 7, 8 high levels of vitamin A dimers correlate with poor retinal health and a variety of mechanisms have been proposed by which dimers of vitamin A may induce retinal toxicity ranging from non specific to direct antagonistic/protagonistic mechanisms.9, 10, 11, 12, 13, 14, 15, 16 As a cationic ambiphilic pyridinium, A2E has been shown to solubilize lipid membranes, inactivate lysosomes by increasing lysosomal pH, and accumulates in the negatively charged mitochondrial compartment. Once dimerized, the special orientation of the polyene chains make them especially susceptible to oxidative degradation16 leading to secondary reactive aldehyde and epoxide toxicants.17 Direct reported mechanisms of A2E toxicity include, acting as an agonist for retinal pigment epithelium-specific 65-kDa protein,18 retinoic acid receptors,10 cyclooxygenase-2,19 and covalent modification of biomolecules,20, 21 among others.Despite data demonstrating that dimers of vitamin A can disrupt cellular hemostasis, there is less direct evidence supporting their role as primary drivers of retinal senescence. More recently, based on studies in ARPE-19 cells, it has been proposed that A2E''s chemical precursor, vitamin A aldehyde (retinaldehyde), might play a role in the degenerative process and that A2E might be a benign biomarker of increased levels of retinaldehyde.16, 17, 18 To determine if A2E could chemically trigger the degenerative process in the retina, we explored the acute and long-term toxicity of A2E to human retinal pigment epithelium (RPE) cells in vitro. ARPE-19 cells treated with A2E showed degraded mitochondria, accumulated glycogen and lipofuscin debris, and underwent a protracted, dose-dependent death over several days to months. These data suggest that A2E can trigger the accumulation of lipofuscin-like debris in the in vivo RPE and can be detrimental to the retina''s health. Data further reveal that increasing concentrations of A2E in the RPE potentially plays a larger role in retinal senescence than previously thought.  相似文献   

5.
Reactive gliosis is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remain poorly understood. Normally astrocytes maintain a critical homeostatic balance. After stress or injury they undergo rapid parainflammatory activation, characterized by hypertrophy, and increased polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein and vimentin. However, the consequences of IF dynamics in the adult CNS remains unclear, and no pharmacologic tools have been available to target this mechanism in vivo. The mammalian retina is an accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal homeostasis. In particular, our work and others have implicated p38 mitogen-activated protein kinase (MAPK) signaling as a key regulator of glutamate recycling, antioxidant activity and cytokine secretion by astrocytes and related Müller glia, with potent influences on neighboring neurons. Here we report experiments with the small molecule inhibitor, withaferin A (WFA), to specifically block type III IF dynamics in vivo. WFA was administered in a model of metabolic retinal injury induced by kainic acid, and in combination with a recent model of debridement-induced astrocyte reactivity. We show that WFA specifically targets IFs and reduces astrocyte and Müller glial reactivity in vivo. Inhibition of glial IF polymerization blocked p38 MAPK-dependent secretion of TNF-α, resulting in markedly reduced neuronal apoptosis. To our knowledge this is the first study to demonstrate that pharmacologic inhibition of IF dynamics in reactive glia protects neurons in vivo.Astrocyte reactivity (reactive gliosis) is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remains poorly understood. In the healthy central nervous system (CNS), astrocytes coordinate homeostatic vascular perfusion, free radical detoxification and neurotransmitter recycling.1, 2 Injury or stress induces a phenotypic switch, whose cardinal features are cellular hypertrophy and increased expression and polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein (GFAP).3, 4, 5 The role of intermediate filaments in reactive gliosis remains unclear.3, 6, 7, 8, 9 Genetic deletion of IFs GFAP and vimentin have been shown to promote axonal outgrowth and regeneration in developing neurons and models of CNS injury,10, 11, 12 yet result in developmental defects to inner retinal function13 and increased damage in models of Alzheimer''s disease.14 Genetically, GFAP gain of function mutations associated with Alexander''s disease induce a p38 mitogen-activated protein kinase (MAPK)-dependent pathology.15 However, no pharmacologic tools have been available to specifically modulate and explore this reactive switch in the context of pathological CNS injury. Consequently, strategies to therapeutically target the reactive switch have remain challenging to explore.Withaferin A (WFA) is a small molecule withanolide that is a potent and specific inhibitor of type III intermediate filament dynamics.16, 17, 18 Its activity has been most closely studied with respect to vimentin rearrangement and phosphorylation in the context of angiogenesis, fibrosis and cancer, through downstream effects on inflammatory signaling and cell proliferation.19, 20, 21, 22, 23, 24 Interestingly, WFA has been reported to regulate vimentin-mediated activation of MAPKs in a context dependent manner, as well as NFκB.25, 26 Recently Bargagna-Mohan et al.27 reported that, in addition to vimentin, WFA also binds covalently to GFAP at cysteine 294. In these studies WFA impaired GFAP filament assembly and polymerization in cultured astrocytes, and in vivo in retinal astrocytes and related Müller glia in a model of injury-induced gliosis.27 Therefore, WFA presents a novel tool to test the pharmacologic blockade of intermediate filament remodeling during gliosis. However, the consequences of WFA disruption of IFs on neuronal damage has not been studied.We have previously used the retina as a uniquely accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal survival.28, 29, 30 In the human and rodent eye retinal ganglion cells (RGCs) and amacrine cells of the inner retina maintain a delicate homeostatic balance and are particularly vulnerable to excitotoxic and metabolic damage, mediated in part through non-cell autonomous interactions with neighboring glia.31, 32, 33, 34 In addition, our work and others has implicated signaling through p38 MAPKs as key regulators of glutamate recycling, antioxidant activity, and cytokine secretion in neighboring stress-activated retinal astrocytes and Müller glia.29, 35, 36, 37 Here we take advantage of a model of induced retinal astrocyte reactivity to establish whether WFA, and the selective p38 MAPK inhibitor SB203580 (SB), affect neuronal apoptosis in a mouse model of excitotoxic injury.  相似文献   

6.
Cell-based therapies are increasingly recognized as a potential strategy to treat retinal neurodegenerative disease. Their administration, however, is normally indirect and complex, often with an inability to assess in real time their effects on cell death and their migration/integration into the host retina. In the present study, using a partial optic nerve transection (pONT) rat model, we describe a new method of Schwann cell (SC) delivery (direct application to injured optic nerve sheath, SC/DONS), which was compared with intravitreal SC delivery (SC/IVT). Both SC/DONS and SC/IVT were able to be assessed in vivo using imaging to visualize retinal ganglion cell (RGC) apoptosis and SC retinal integration. RGC death in the pONT model was best fitted to the one-phase exponential decay model. Although both SC/DONS and SC/IVT altered the temporal course of RGC degeneration in pONT, SC/DONS resulted in delayed but long-lasting effects on RGC protection, compared with SC/IVT treatment. In addition, their effects on primary and secondary degeneration, and axonal regeneration, were also investigated, by histology, whole retinal counting, and modelling of RGC loss. SC/DONS was found to significantly reduce RGC apoptosis in vivo and significantly increase RGC survival by targeting secondary rather than primary degeneration. Both SC/DONS and SC/IVT were found to promote RGC axonal regrowth after optic nerve injury, with evidence of GAP-43 expression in RGC somas and axons. SC/DONS may have the potential in the treatment of optic neuropathies, such as glaucoma. We show that SC transplantation can be monitored in real time and that the protective effects of SCs are associated with targeting secondary degeneration, with implications for translating cell-based therapies to the clinic.In the central (CNS) and peripheral (PNS) nervous systems, injury from initial lesions can lead to widespread damage to neurons beyond the primary injury site; a phenomenon known as ‘secondary degeneration''. Studies in spinal cord injury have revealed secondary rather than primary degeneration to be the major contributor to neuronal death and functional impairment, and it is increasingly recognized as a therapeutic target.1,2 Secondary degeneration also occurs in optic neuropathies, including glaucoma, ischaemic optic neuropathy, and Leber''s hereditary optic neuropathy.3, 4, 5 Retinal neuronal loss in these conditions is reported to occur long after the initial insult,6 implying that secondary mechanisms may have an important role in optic neuropathic damage and that targeting of secondary neuronal loss may represent a novel therapeutic strategy.Partial optic nerve transection (pONT) represents a reliable and reproducible model for studying secondary degeneration, in which a primary lesion is only made to dorsal axons and leaves those in ventral optic nerve (ON) intact but vulnerable to secondary degeneration.4,7 Secondary degeneration is thought to be initiated by a cascade of reactive metabolic events, including glutamate excitotoxicity, Ca2+ overload, excess free radical formation, oxidative stress, mitochondrial dysfunction, and increased proteoglycan expression, leading to cell death.7, 8, 9, 10, 11, 12, 13, 14 Activated astrocytes are reported to be a major contributor to spreading and acceleration of secondary degeneration.8,9As in most CNS pathways, the mature ON possesses only a limited ability to repair itself after injury, resulting in permanent vision loss due to the death of retinal ganglion cells (RGCs), the retinal output neurons that transmit visual information to the brain.15 Compared with the CNS, the PNS has a remarkable ability to regrow after injury, a process in which Schwann cells (SCs) are thought to have a key role.16,17SCs are the principal glia of the PNS and support normal neuronal function.18,19 Upon axonal injury, SCs are reported to shed their myelin sheaths and de-differentiate into progenitor stem cells, which are capable of replacing damaged tissue and providing a permissive environment for neuronal survival and axonal regrowth.18,19 SCs are believed to achieve this through releasing neurotrophic factors and producing cell adhesion molecules and extracellular matrix components.20 The neuroprotective and regenerative mechanisms between SCs and neurons are thought to operate on a local basis via adhesion molecules, allowing contact-mediated signalling between cells,16,17,20,21 and extracellular free ligands, facilitating specific binding to the receptors in the target neurons.16,17,20 However, a novel regulatory mechanism has emerged, representing a more efficient and advanced communication machinery, that is, vesicular transfer between SCs and axons.16 We have recently demonstrated that the highly efficient response of SCs to PN injury is triggered by Ephrin-B/EphB2 signalling in fibroblasts, which guide SC sorting and migration during nerve repair.21Due to the regenerative ability of SCs in PNS repair, transplantation of SCs to the injured ON has been previously attempted.22, 23, 24, 25, 26, 27, 28 To date, however, the protective effects of SCs on retinal neurons have been only assessed after either intravitreal administration or suturing artificial SC grafts onto transected ON, using postmortem histological observations, with incomplete delineation of the mechanisms involved.22, 23, 24, 25, 26, 27, 28Here we use a pONT model to investigate a new method of SC delivery (direct application to injured ON sheath, SC/DONS), using in vivo imaging and histological techniques, and compare its effects on RGC apoptosis and loss to intravitreal SC delivery (SC/IVT). Furthermore, we analyse whether these actions target primary or secondary degeneration, to determine their potential in the treatment of optic neuropathy.  相似文献   

7.
8.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   

9.
Neuritin 1 (Nrn1) is an extracellular glycophosphatidylinositol-linked protein that stimulates axonal plasticity, dendritic arborization and synapse maturation in the central nervous system (CNS). The purpose of this study was to evaluate the neuroprotective and axogenic properties of Nrn1 on axotomized retinal ganglion cells (RGCs) in vitro and on the in vivo optic nerve crush (ONC) mouse model. Axotomized cultured RGCs treated with recombinant hNRN1 significantly increased survival of RGCs by 21% (n=6–7, P<0.01) and neurite outgrowth in RGCs by 141% compared to controls (n=15, P<0.05). RGC transduction with AAV2-CAG–hNRN1 prior to ONC promoted RGC survival (450%, n=3–7, P<0.05) and significantly preserved RGC function by 70% until 28 days post crush (dpc) (n=6, P<0.05) compared with the control AAV2-CAG–green fluorescent protein transduction group. Significantly elevated levels of RGC marker, RNA binding protein with multiple splicing (Rbpms; 73%, n=5–8, P<0.001) and growth cone marker, growth-associated protein 43 (Gap43; 36%, n=3, P<0.01) were observed 28 dpc in the retinas of the treatment group compared with the control group. Significant increase in Gap43 (100%, n=5–6, P<0.05) expression was observed within the optic nerves of the AAV2–hNRN1 group compared to controls. In conclusion, Nrn1 exhibited neuroprotective, regenerative effects and preserved RGC function on axotomized RGCs in vitro and after axonal injury in vivo. Nrn1 is a potential therapeutic target for CNS neurodegenerative diseases.Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of intrinsic and extrinsic cellular events resulting in regenerative failure and subsequent damage to neurons.1, 2, 3, 4, 5 The intrinsic factors include deregulation in growth-promoting factors, apoptotic factors, intracellular signaling molecules and trophic factors.6 Similarly, the extrinsic factors correlate to growth inhibition due to inhibitory cues3, 7, 8, 9, 10, 11, 12, 13 that include myelin and myelin associated inhibitors, glial scarring,5, 14 slow clearance of axonal debris,7 incorrect development of neuronal projections6 and CNS inflammation.15, 16 Progressive degeneration of mature retinal ganglion cells (RGCs) has been associated with loss of trophic support,8, 9 detrimental inflammatory processes/immune regulation10, 11 and apoptotic effectors.9, 12, 13, 15, 17After injury, mammalian RGC axons show only a short-lived sprouting response but no long-distance regeneration through the optic nerve (ON).16 Glial responses around the affected area are initiated by injured CNS axons.18 Axons undergoing Wallerian degeneration are surrounded by astrocytes that upregulate glial fibrillary acidic protein (Gfap) expression and these reactive astrocytes contribute to trauma-induced neurodegeneration.19 Glial scarring inhibits axonal transport after ON crush (ONC)5, 14 decreasing transport of proteins involved in neuroprotection and synaptic plasticity. Regenerative failure is a critical endpoint of these destructive triggers culminating in neuronal apoptosis3, 20, 21 and inhibition of functional recovery. Intrinsic factors affecting axonal regeneration after CNS injury are crucial for recovery and thus, dysregulation of genes involved in axonal plasticity and outgrowth can prove detrimental to the neuronal recovery.22, 23, 24Current neuroprotection approaches include promoting survival of RGCs by intraocular injections of recombinant factors like ciliary neurotrophic factor (CNTF) and peripheral nerve (PN) transplantations in vitro25 and in vivo after injury.26 Studies performed with glial cell-line-derived neurotrophic factor and neurturin protect RGCs from axotomy-induced apoptosis.27 Further, in the ON injury model, RGC survival was promoted after deletion of CCAAT/enhancer binding protein homologous protein28 and enhanced regeneration observed with co-deletion of kruppel-like factor 4 (Klf4) and suppressor of cytokine signaling 3 (Socs3).29 Intraocular administration of neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) after ON transection has also exerted neuroprotective effects on axotomized RGCs. In addition, PNs transplanted adjacent to ONs, ex vivo PN grafts with lenti-viral transduced Schwann cells, and stimulation of inflammatory processes have strong pro-regenerative effects on injured RGCs.26, 30, 31, 32, 33In addition, using adeno-associated-virus (AAV) therapy, AAV mediated expression of CNTF in bcl2 overexpressing transgenic mice increases cell viability and axonal regeneration,34 whereas BDNF promotes survival of RGCs.35 Likewise, experiments with AAV–BDNF, –CNTF and –growth-associated protein 43 (GAP43) have shown that AAV–CNTF was the most crucial for promoting both long-term survival and regeneration.36 The positive effects of CNTF are observed mainly through simultaneous deletion of both PTEN and SOCS337 and the concurrent activation of mTOR and STAT3 pathways.38 Although CNTF shows robust increase and sustained axon regeneration in injured ONs of rodents, it causes axonal misguidance and aberrant growth.39 Furthermore, it has been shown that CNTF acts as a chemoattractant. CNTF administration onto autologous PN grafts transplanted within transected ON increased regeneration, but these effects were significantly reduced after removal of macrophages from this site.40 In addition, the effects of CNTF using PN grafts at ON transection sites are further subject to debate, as previously it has been shown that Ad-CNTF injections preserved RGC axons but did not induce regeneration of axotomized RGCs.41 Thus, other studies have addressed RGC survivability and axonal regeneration with CNTF and other growth factors,35, 36 but most trophic factors affect neuronal survival and regeneration differentially.Previous studies targeting neuronal apoptosis by overexpressing intrinsic growth factors, inhibiting apoptosis and enhancing regeneration in CNS trauma models have established that a multifactorial approach is required for successful and long-lasting therapeutic outcomes.6, 36 Current gaps still exist for a key gene that could effectively target neuroprotection, enhance neuron regeneration and sustain neuronal function.One key gene implicated in neuronal plasticity is Neuritin 1 (Nrn1), also known as candidate plasticity gene 15. It has multiple functions and was first identified and characterized when screening for candidate plasticity genes in the rat hippocampal dentate gyrus activated by kainate.42, 43, 44 Nrn1 is highly conserved across species45 and translates to an extracellular, glycophosphatidylinositol-linked protein (GPI-linked protein), which can be secreted as a soluble form. Nrn1 stimulates axonal plasticity, dendritic arborization and synapse maturation in the CNS.46 During early embryonic development, Nrn1 promotes the survival of neural progenitors and differentiated neurons,47 while later in development it promotes axonal and dendritic growth and stabilization, allowing maturation and formation of synapses.43, 46, 48 In the adult brain, Nrn1 has been correlated with activity-dependent functional plasticity45, 49 and is expressed in post mitotic neurons.Nrn1 may be a crucial gene for neuroprotection and regeneration because growth factors such as nerve growth factor (NGF), BDNF and NT-3 as well as neuronal activity can potentiate the expression of Nrn1.44, 50 In addition, we reported that Nrn1 mRNA expression appears to be biphasic after ON axonal trauma, indicating a transient attempt by RGCs at neuroprotection/neuroregeneration in response to ONC injury.51 The dynamic regulation of Nrn1 coupled with neurotrophic effects may promote axonal regeneration in the CNS. To overcome CNS trauma, a new therapy geared towards neuroprotection and effective axonal regeneration is required to enhance a future multifactorial approach. The purpose of this study is to evaluate the therapeutic effects of Nrn1 in mouse RGC cultures as well as in the mouse ONC model. We have identified a distinct neuroprotective and regenerative strategy that prevents neurodegeneration after ON injury. AAV2–hNRN1 expression vectors partially rescued RGCs from apoptosis, maintained RGC function, and initiated regeneration of injured axons.  相似文献   

10.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

11.
Previous studies show that caspase-6 and caspase-8 are involved in neuronal apoptosis and regenerative failure after trauma of the adult central nervous system (CNS). In this study, we evaluated whether caspase-6 or -8 inhibitors can reduce cerebral or retinal injury after ischemia. Cerebral infarct volume, relative to appropriate controls, was significantly reduced in groups treated with caspase-6 or -8 inhibitors. Concomitantly, these treatments also reduced neurological deficits, reduced edema, increased cell proliferation, and increased neurofilament levels in the injured cerebrum. Caspase-6 and -8 inhibitors, or siRNAs, also increased retinal ganglion cell survival at 14 days after ischemic injury. Caspase-6 or -8 inhibition also decreased caspase-3, -6, and caspase-8 cleavage when assayed by western blot and reduced caspase-3 and -6 activities in colorimetric assays. We have shown that caspase-6 or caspase-8 inhibition decreases the neuropathological consequences of cerebral or retinal infarction, thereby emphasizing their importance in ischemic neuronal degeneration. As such, caspase-6 and -8 are potential targets for future therapies aimed at attenuating the devastating functional losses that result from retinal or cerebral stroke.Stroke is the second-leading cause of disability and death in high-income countries.1 Thromboembolism, the physical blockage of a cerebral blood vessel, is a major cause of stroke.2 The bulk of ischemic episodes occur by occlusion of the middle cerebral artery (MCA) and its branches.3 Cerebral ischemia causes neuronal energy depletion and programmed cell death (apoptosis), both of which are facilitated by intermediate factors such as the release of excess excitatory amino acids,4 reactive oxygen species,5 free-radical formation, and inflammation.6The majority of cerebral infarcts in humans originate from previously formed thrombi that detach from damaged carotid arteries and become lodged in branches of the MCA. Cerebral ischemia can be experimentally induced by injecting either a heterogeneous or an autologous pre-formed clot into the MCA. Thromboembolic stroke models are valuable in studying ischemic infarction because they recapitulate the hallmark symptoms of human cerebrovascular disease.7, 8 Moreover, thromboembolic-induced stroke shows predictable changes in blood flow and a more consistent degree of infarct distribution, relative to other models of middle cerebral artery occlusion (MCAO).8, 9Retinal ischemia is also a common cause of visual impairment and blindness.10 Retinal ischemia induced by ligation or clamping of the ophthalmic artery is a reproducible model of CNS stroke that is highly amenable to experimental manipulations.10, 11 As the retina is an extension of the diencephalon, retinal blood vessels share similar anatomical and physiological properties with those in the brain, and possess a blood–retinal barrier analogous to the blood–brain barrier.12 Following the induction of retinal ischemia, ~50% of retinal ganglion cells (RGCs) die within the first 2 weeks after stroke.13Cysteine-aspartic proteases (caspases) are a family of enzymes that orchestrate apoptosis, necrosis, and inflammation.14, 15 They are first synthesized as pro-caspases (zymogens) that consist of a prodomain, a small subunit (~p10 kDa) and a large subunit (~p20 KDa). Caspase-6 (CASP6) activation requires proteolytic processing (cleavage) of the zymogen into ~p10 and ~p20 fragments.14, 16 Caspase-8 (CASP8) activation occurs by dimerization, which causes a conformational change of the zymogen.17 Caspases orchestrate cell death in many neurodegenerative conditions: CASP6-dependent axon degeneration has been shown to contribute to Alzheimer''s disease pathology,15, 18 and neurodegeneration associated with Huntington''s disease,19 in several experimental models.15, 18 Furthermore, CASP8 promotes apoptosis induced by a Parkinson-associated mutation in leucine-rich repeat kinase 2.20, 21Owing to early findings that caspases -3 and -9 were not involved in axonal degeneration,22 CNS axon degeneration was believed to be caspase-independent; however, it has been discovered that CASP6 is required for neuronal axon degeneration in vitro.18 Furthermore, we have shown a prominent role for CASP6 and CASP8 in RGC apoptosis and regenerative failure after optic nerve transection or optic nerve crush.20 In these injury models, CASP6 appears to activate CASP8 in injured RGCs and the inhibitory peptides Z-VEID-FMK and Z-IETD-FMK confer significant neuroprotection, while promoting axon regeneration in the crushed optic nerve.20 More recently, it was shown that CASP8 mRNA levels were increased in the ischemic cortex following MCAO.23 Consequently, we chose to examine the neuroprotective effects of CASP6 or CASP8 inhibition following cerebral or retinal ischemic injury, under normothermic conditions.  相似文献   

12.
Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (αSyn-WT), a protein associated with PD, and its mutant variants αSyn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of αSyn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of αSyn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with αSyn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all αSyn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by αSyn-WT and -A53T but not by αSyn-A30P. Correspondingly, colocalization of αSyn and the autophagy marker LC3 was reduced for αSyn-A30P compared with the other αSyn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both αSyn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that αSyn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered.Growing evidence suggests that Parkinson''s disease (PD) pathology starts at the presynaptic terminals and the distal axons and is then propagated back to the soma in a ''dying back'' pattern.1, 2 Accordingly, at the time of clinical onset, there is only a 30% loss of total substantia nigra pars compacta neurons but a far more severe loss of striatal dopaminergic markers (70–80%), suggesting that axonal terminals of the nigrostriatal pathway are affected earlier.1 It is thus essential to understand the pathomechanisms specifically affecting the axon in PD in order to interfere with early disease progression.Neurodegeneration in PD is accompanied by the appearance of intraneuronal protein aggregates, denoted Lewy bodies (LBs).3 Interestingly, also LB pathology is initially found in the distal axons before becoming evident in the neuronal somata, and dystrophic neurites, so called ''Lewy neurites'', outnumber LBs in the early stages of PD.2, 4, 5 A main component of LBs is the protein alpha-synuclein (αSyn) that is not only widely used as a histopathological marker for PD but is also believed to have a major role in PD pathogenesis.6, 7 The importance of αSyn is further underlined by the discovery of αSyn point mutations (e.g. Ala53Thr (A53T), Ala30Pro (A30P)) and multiplications of the αSyn gene, all of which cause autosomal dominant forms of PD.8, 9, 10 However, neither the physiological functions nor the pathogenetic mechanisms of αSyn are well understood.7The biological effects of αSyn expression strongly depend on the model system. Wild-type (WT) human αSyn does not lead to major clinical or histological abnormalities when expressed in transgenic mice,11, 12 but its overexpression mediated by adeno-associated viral vectors (AAV) results in severe neurodegeneration, suggesting a dose-dependent toxic effect.13, 14 Different human αSyn-A30P and -A53T transgenic mouse lines develop severe motor impairments, partly resembling symptoms of human PD, accompanied by a degeneration of the nigrostriatal neuronal system and LB-like pathology.11, 12, 15 In line with the pathological findings in human PD, the axonal compartment is affected early and most prominently in these animal models.Different putative pathomechanisms of αSyn toxicity have been explored. For example, the cytoskeleton is an important molecular target of αSyn. Multimeric forms of αSyn were shown to impair the polymerization of tubulin and microtubule formation.16, 17 Overexpression of αSyn increased actin instability and induced actin bundling in cultured hippocampal neurons.18 There are, however, divergent data on the resulting effects of αSyn overexpression on neurite outgrowth and integrity in different model systems.19, 20, 21, 22Moreover, a dysregulation of autophagy has been implicated in PD pathology. Aberrant αSyn is normally degraded by autophagy and only to a negligible degree by the proteasome.23 Several studies have shown that the inhibition of autophagy results in an accumulation and increased toxicity of αSyn, whereas the activation of autophagy has therapeutic effects in PD models.23, 24, 25, 26 However, the direct effects of αSyn and its mutants on autophagy seem to rely strongly on the model system and the published data are highly controversial.24, 26, 27, 28, 29, 30, 31, 32Given the central role of axonal degeneration in PD, it is likely that disturbances of axonal transport are involved.33 In support of this proposition, the motor protein kinesin was shown to be decreased early and stage-dependently in PD patients, preceding the loss of substantia nigra neurons.34 αSyn itself is actively transported along the axons, mainly by the slow component of axonal transport, but the role of αSyn in axonal vesicle transport is unclear.35Here, we present a comprehensive analysis of the effects of αSyn on neurite morphology and examine important pathomechanisms.  相似文献   

13.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

14.
Necroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death.Programmed cell death has a crucial role in a variety of biological processes ranging from normal tissue development to diverse pathological conditions.1, 2 Necroptosis is a form of regulated cell death that has been shown to occur during pathogen infection or sterile injury-induced inflammation in conditions where apoptosis signaling is compromised.3, 4, 5, 6 Given that many viruses have developed strategies to circumvent apoptotic cell death, necroptosis constitutes an important, pro-inflammatory back-up mechanism that limits viral spread in vivo.7, 8, 9 In contrast, in the context of sterile inflammation, necroptotic cell death contributes to disease pathology, outlining potential benefits of therapeutic intervention.10 Necroptosis can be initiated by death receptors of the tumor necrosis factor (TNF) superfamily,11 Toll-like receptor 3 (TLR3),12 TLR4,13 DNA-dependent activator of IFN-regulatory factors14 or interferon receptors.15 Downstream signaling is subsequently conveyed via RIPK116 or TIR-domain-containing adapter-inducing interferon-β,8, 17 and converges on RIPK3-mediated13, 18, 19, 20 activation of MLKL.21 Phosphorylated MLKL triggers membrane rupture,22, 23, 24, 25, 26 releasing pro-inflammatory cellular contents to the extracellular space.27 Studies using the RIPK1 inhibitor necrostatin-1 (Nec-1) 28 or RIPK3-deficient mice have established a role for necroptosis in the pathophysiology of pancreatitis,19 artherosclerosis,29 retinal cell death,30 ischemic organ damage and ischemia-reperfusion injury in both the kidney31 and the heart.32 Moreover, allografts from RIPK3-deficient mice are better protected from rejection, suggesting necroptosis inhibition as a therapeutic option to improve transplant outcome.33 Besides Nec-1, several tool compounds inhibiting different pathway members have been described,12, 16, 21, 34, 35 however, no inhibitors of necroptosis are available for clinical use so far.2, 10 In this study we screened a library of FDA approved drugs for the precise purpose of identifying already existing and generally safe chemical agents that could be used as necroptosis inhibitors. We identified the two structurally distinct kinase inhibitors pazopanib and ponatinib as potent blockers of necroptosis targeting the key enzymes RIPK1/3.  相似文献   

15.
16.
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival and regeneration-promoting factor for dopaminergic neurons in cell and animal models of Parkinson disease (PD). GDNF is currently tested in clinical trials on PD patients with so far inconclusive results. The receptor tyrosine kinase Ret is the canonical GDNF receptor, but several alternative GDNF receptors have been proposed, raising the question of which signaling receptor mediates here the beneficial GDNF effects. To address this question we overexpressed GDNF in the striatum of mice deficient for Ret in dopaminergic neurons and subsequently challenged these mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Strikingly, in this established PD mouse model, the absence of Ret completely abolished GDNF''s neuroprotective and regenerative effect on the midbrain dopaminergic system. This establishes Ret signaling as absolutely required for GDNF''s effects to prevent and compensate dopaminergic system degeneration and suggests Ret activation as the primary target of GDNF therapy in PD.Glial cell line-derived neurotrophic factor (GDNF) is the founding member of the four ligands in the GDNF family, which belong to the transforming growth factor-β superfamily.1 GDNF was characterized as a potent survival factor for many neurons in culture such as dopaminergic, motor, sympathetic, parasympathetic, sensory and enteric neurons.1, 2 In addition, in dopaminergic neuron cultures GDNF stimulates neuronal differentiation, neurite outgrowth, synapse formation and dopamine release.1, 2As degeneration of midbrain dopaminergic neurons in the substantia nigra pars compacta (SNpc) represents a major hallmark of Parkinson disease (PD), the most common neurodegenerative movement disorder, GDNF has raised considerable interest as a therapeutic molecule for the treatment of PD.3, 4, 5 PD affects >2% of individuals over the age of 60 years, but no curative treatment is available to date, mainly due to a lack of understanding disease etiology.6, 7, 8 Preclinical studies in the established 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) rodent and primate models of PD demonstrated a substantial neuroprotection and regeneration effect by striatal provided GDNF or its close relative neurturin.3, 4, 9 However, clinical phase II trials on PD patients using GDNF or neurturin did so far not convincingly recapitulate their beneficial effects on the dopaminergic system in humans most likely due to technical problems and the selection of advanced PD patients.10, 11, 12, 13GDNF signaling is highly complex as this neurotrophic factor can bind to a variety of receptors, thus being able to induce pleiotropic effects. GDNF efficiently binds to the GPI-linked GDNF family receptor α1 (GFRα1).1, 2 It has been shown that the GDNF/GFRα1 complex can activate not only the canonical GDNF receptor Ret, a receptor tyrosine kinase which signals through the sarcoma protein (Src)/rat sarcoma (Ras)/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt, NF-κB (nuclear factor ''kappa-light-chain-enhancer'' of activated B cells), JNK (c-Jun N-terminal kinases) and PLCγ (phospholipase γ) pathway, but also with other signaling inducing receptors.1, 2, 4, 5, 13 So far, at least four alternative GDNF receptors have been described which are all expressed in midbrain dopaminergic neurons, NCAM,14, 15 the integrins αV and βI,14, 16 syndecan 317 and N-cadherin.18 Interestingly, Ret is not essential during pre- and postnatal development of the mouse dopaminergic system,19, 20, 21, 22, 23 but specifically required for the maintenance of SNpc dopaminergic neurons and their striatal innervation in aged mice.23, 24, 25 In contrast, GDNF seems most likely under physiological conditions to be dispensable during development and maintenance of midbrain dopaminergic neurons in mice, although conflicting results exist.26, 27, 28 Thus, Ret might be activated by a GDNF-independent mechanism to stimulate SNpc dopaminergic neuron survival. In addition, the in vivo function of the alternative GDNF receptors in the dopaminergic system under physiological and pathophysiological conditions, like PD, and their dependence on GDNF has not yet been addressed in detail. This raised the important question which GDNF receptor might be required to mediate GDNF''s reported neuroprotective and regenerative effect in the dopaminergic system in PD animal models and potentially in PD patients.5, 29Previously, we showed in dopaminergic neuron-specific Ret knockout mice that Ret receptor loss does not result in a higher vulnerability of midbrain dopaminergic neurons against MPTP but to less resprouting of left over dopaminergic neuron axons in the striatum after MPTP intoxication.30 In adult mice endogenous GDNF levels are rather low.26, 31 Therefore, we could not rule out in that study the possibility, that higher levels of GDNF—as also used in the clinical GDNF trials in PD patients—might have neuroprotective and regenerating effects even in the absence of the Ret receptor. Here we addressed now this question by viral overexpression of GDNF in MPTP-treated mice lacking expression of Ret again specifically in dopaminergic neurons.23, 30 We found that in the absence of Ret in dopaminergic neurons even a substantial overexpression of GDNF in the striatum does not have a neuroprotective and regenerative effect. Thus, despite the expression of alternative GDNF receptors on midbrain dopaminergic neurons, the presence of the canonical GDNF receptor Ret seems to be mandatory for mediating GDNF''s beneficial survival and axonal resprouting effect in these neurons.  相似文献   

17.
Damage and loss of the postmitotic photoreceptors is a leading cause of blindness in many diseases of the eye. Although the mechanisms of photoreceptor death have been extensively studied, few studies have addressed mechanisms that help sustain these non-replicating neurons for the life of an organism. Autophagy is an intracellular pathway where cytoplasmic constituents are delivered to the lysosomal pathway for degradation. It is not only a major pathway activated in response to cellular stress, but is also important for cytoplasmic turnover and to supply the structural and energy needs of cells. We examined the importance of autophagy in photoreceptors by deleting the essential autophagy gene Atg5 specifically in rods. Loss of autophagy led to progressive degeneration of rod photoreceptors beginning at 8 weeks of age such that by 44 weeks few rods remained. Cone photoreceptor numbers were only slightly diminished following rod degeneration but their function was significantly decreased. Rod cell death was apoptotic but was not dependent on daily light exposure or accelerated by intense light. Although the light-regulated translocation of the phototransduction proteins arrestin and transducin were unaffected in rods lacking autophagy, Atg5-deficient rods accumulated transducin-α as they degenerated suggesting autophagy might regulate the level of this protein. This was confirmed when the light-induced decrease in transducin was abolished in Atg5-deficient rods and the inhibition of autophagy in retinal explants cultures prevented its degradation. These results demonstrate that basal autophagy is essential to the long-term health of rod photoreceptors and a critical process for maintaining optimal levels of the phototransduction protein transducin-α. As the lack of autophagy is associated with retinal degeneration and altered phototransduction protein degradation in the absence of harmful gene products, this process may be a viable therapeutic target where rod cell loss is the primary pathologic event.Autophagy is an intracellular pathway where cytoplasmic constituents are delivered to the lysosomes for degradation. Defective autophagy can contribute to the age-dependent accumulation of damaged proteins and organelles leading to altered cellular homeostasis and loss of function.1, 2, 3, 4, 5 The metabolic roles of autophagy can be classified into two types, basal and induced. In nutrient-rich conditions, autophagy is suppressed but still occurs at low levels (basal autophagy); however, when cells are subjected to stress (starvation, injury, hypoxia), autophagy is activated immediately (induced autophagy).6 Induced autophagy maintains the amino acid pool inside cells to adapt to starvation while constitutive autophagy has been shown to function as a cell-repair mechanism that is important for long-lived postmitotic cells.7, 8, 9, 10, 11 Defects in autophagy have been associated with neurodegenerative diseases,12, 13, 14, 15 diabetes,16, 17 lysosomal storage disease18 and the loss of vision.19 In addition to macroautophagy, microautophagy and chaperone-mediated autophagy (CMA) have been described. Although little is known about microautophagy in mammalian cells, macroautophagy (hereafter autophagy) is a major pathway for bulk degradation of cytoplasmic components. CMA is a more selective pathway for degradation of cytosolic proteins that can compensate for the loss of macroautophagy.2, 20, 21, 22Inherited retinal degenerative diseases such as retinitis pigmentosa or Leber''s congenital amaurosis are characterized by premature and progressive death of rod and cone photoreceptor cells.23 These diseases are characterized by the loss of night vision due to the death of rods followed by the loss of cones leading to diminished visual acuity and a reduction in the quality of life for patients. Disease is typically associated with the production of harmful gene products that promote pathology by inhibiting critical pathways resulting in cell death.24, 25, 26 Strategies to prevent photoreceptor death during retinal degenerative disease such as gene replacement therapies or inhibition of cell death pathways have been undertaken with some success;27, 28, 29 however, effective treatments for these blinding disorders are lacking.Another strategy that could be used in conjunction with other therapies might be to enhance survival by stimulating autophagy. Augmenting autophagy would increase the supply of nutrients to stressed cells and accelerate removal of damaged proteins thereby prolonging cell survival beyond what would be possible by only preventing cell death. Although canonical22, 30, 31, 32, 33 and noncanonical autophagic mechanisms34 have been detected in the eye, our knowledge of basic autophagy functions in this organ is still limited. In order to understand how autophagy maintains retinal homeostasis and function, we undertook studies to examine the consequences of deleting the essential autophagy gene Atg5 in rod photoreceptors.  相似文献   

18.
19.
Bak and Bax mediate apoptotic cell death by oligomerizing and forming a pore in the mitochondrial outer membrane. Both proteins anchor to the outer membrane via a C-terminal transmembrane domain, although its topology within the apoptotic pore is not known. Cysteine-scanning mutagenesis and hydrophilic labeling confirmed that in healthy mitochondria the Bak α9 segment traverses the outer membrane, with 11 central residues shielded from labeling. After pore formation those residues remained shielded, indicating that α9 does not line a pore. Bak (and Bax) activation allowed linkage of α9 to neighboring α9 segments, identifying an α9:α9 interface in Bak (and Bax) oligomers. Although the linkage pattern along α9 indicated a preferred packing surface, there was no evidence of a dimerization motif. Rather, the interface was invoked in part by Bak conformation change and in part by BH3:groove dimerization. The α9:α9 interaction may constitute a secondary interface in Bak oligomers, as it could link BH3:groove dimers to high-order oligomers. Moreover, as high-order oligomers were generated when α9:α9 linkage in the membrane was combined with α6:α6 linkage on the membrane surface, the α6-α9 region in oligomerized Bak is flexible. These findings provide the first view of Bak carboxy terminus (C terminus) membrane topology within the apoptotic pore.Mitochondrial permeabilization during apoptosis is regulated by the Bcl-2 family of proteins.1, 2, 3 Although the Bcl-2 homology 3 (BH3)-only members such as Bid and Bim trigger apoptosis by binding to other family members, the prosurvival members block apoptosis by sequestering their pro-apoptotic relatives. Two remaining members, Bak and Bax, form the apoptotic pore within the mitochondrial outer membrane (MOM).Bak and Bax are globular proteins comprising nine α-helices.4, 5 They are activated by BH3-only proteins binding to the α2–α5 surface groove,6, 7, 8, 9, 10, 11, 12 or for Bax, to the α1/α6 ‘rear pocket''.13 Binding triggers dissociation of the latch domain (α6–α8) from the core domain (α2–α5), together with exposure of N-terminal epitopes and the BH3 domain.6, 7, 14, 15, 16 The exposed BH3 domain then binds to the hydrophobic groove in another Bak or Bax molecule to generate symmetric homodimers.6, 7, 14, 17, 18 In addition to dimerizing, parts of activated Bak and Bax associate with the lipid bilayer.19 In Bax, the α5 and α6 helices may insert into the MOM,20 although recent studies indicate that they lie in-plane on the membrane surface, with the hydrophobic α5 sandwiched between the membrane and a BH3:groove dimer interface.7, 21, 22, 23 The dimers can be linked via cysteine residues placed in α6,18, 24, 25 and more recently via cysteine residues in either α3 or α5,6, 21 allowing detection of the higher-order oligomers associated with pore formation.26, 27 However, whether these interactions are required for high-order oligomers and pore formation remains unclear.Like most Bcl-2 members, Bak and Bax are targeted to the MOM via a hydrophobic C-terminal region. The C terminus targets Bak to the MOM in healthy cells,28 whereas the Bax C terminus is either exposed29 or sequestered within the hydrophobic groove until apoptotic signals trigger Bax translocation.5, 30, 31 The hydrophobic stretch is important, as substituting polar or charged residues decreased targeting of Bak and Bax.10, 32 Mitochondrial targeting is also controlled by basic residues at the far C termini,32, 33, 34 and by interaction with VDAC235, 36 via the Bak and Bax C termini.37, 38 Retrotranslocation of Bak and Bax was also altered by swapping the C termini.39The membrane topology of the Bak and Bax C termini before and after apoptosis has not been examined directly, due in part to difficulty in reconstituting oligomers of full-length Bak in artificial membranes. Nor is it known whether the C termini contribute to pore formation by promoting oligomerization or disturbing the membrane. To address these questions synthetic peptides based on the Bak and Bax C termini have been studied in model membranes. The peptides adopt a predominantly α-helical secondary structure,40, 41, 42, 43 with orientation affected by lipid composition.42, 44, 45 The peptides could also permeabilize lipid vesicles,41, 43, 46, 47 suggesting that the C termini in full-length Bak and Bax may contribute to pore formation.Here we examined the membrane topology of the C termini within full-length Bak and Bax in the MOM, both before and after apoptotic pore formation. After pore formation the α9 helices of Bak (and of Bax) became juxtaposed but did not line the surface of a pore. The α9:α9 interaction occurred after Bak activation and conformation change, but was promoted by formation of BH3:groove dimers. Combining linkage at more than one interface indicated that the Bak α9:α9 interface can link BH3:groove dimers to high-order oligomers, and moreover, that the α6–α9 region is flexible in oligomerized Bak.  相似文献   

20.
Overgrowth of white adipose tissue (WAT) in obesity occurs as a result of adipocyte hypertrophy and hyperplasia. Expansion and renewal of adipocytes relies on proliferation and differentiation of white adipocyte progenitors (WAP); however, the requirement of WAP for obesity development has not been proven. Here, we investigate whether depletion of WAP can be used to prevent WAT expansion. We test this approach by using a hunter-killer peptide designed to induce apoptosis selectively in WAP. We show that targeted WAP cytoablation results in a long-term WAT growth suppression despite increased caloric intake in a mouse diet-induced obesity model. Our data indicate that WAP depletion results in a compensatory population of adipose tissue with beige adipocytes. Consistent with reported thermogenic capacity of beige adipose tissue, WAP-depleted mice display increased energy expenditure. We conclude that targeting of white adipocyte progenitors could be developed as a strategy to sustained modulation of WAT metabolic activity.Obesity, a medical condition predisposing to diabetes, cardiovascular diseases, cancer, and complicating other life-threatening diseases, is becoming an increasingly important social problem.1, 2, 3 Development of pharmacological approaches to reduction of body fat has remained a daunting task.4 Approved obesity treatments typically produce only moderate and temporary effects.2,5 White adipocytes are the differentiated cells of white adipose tissue (WAT) that store triglycerides in lipid droplets.6,7 In contrast, adipocytes of brown adipose tissue (BAT) dissipate excess energy through adaptive thermogenesis. Under certain conditions, white adipocytes can become partially replaced with brown-like ‘beige'' (‘brite'') adipocytes that simulate the thermogenic function of BAT adipocytes.7,8 Obesity develops in the context of positive energy balance as a result of hypertrophy and hyperplasia of white adipocytes.9Expansion and renewal of the white adipocyte pool in WAT continues in adulthood.10,11 This process is believed to rely on proliferation and self-renewal of mesenchymal precursor cells12 that we term white adipocyte progenitors (WAPs). WAPs reside within the population of adipose stromal cells (ASCs)13 and are functionally similar to bone marrow mesenchymal stem cells (MSCs).14, 15, 16 ASCs can be isolated from the stromal/vascular fraction (SVF) of WAT based on negativity for hematopoietic (CD45) and endothelial (CD31) markers.17,18 ASCs support vascularization as mural/adventitial cells secreting angiogenic factors5,19 and, unlike bone marrow MSCs, express CD34.19,20 WAPs have been identified within the ASC population based on expression of mesenchymal markers, such as platelet-derived growth factor receptor-β (PDGFRβ, aka CD140b) and pericyte markers.17,18 Recently, a distinct ASC progenitor population capable of differentiating into both white and brown adipocytes has been identified in WAT based on PDGFRα (CD140a) expression and lack of PDGFRβ expression.21,22 The physiological relevance of the two precursor populations residing in WAT has not been explored.We have previously established an approach to isolate peptide ligands binding to receptors selectively expressed on the surface of cell populations of interest.23, 24, 25, 26, 27 Such cell-targeted peptides can be used for targeted delivery of experimental therapeutic agents in vivo. A number of ‘hunter-killer'' peptides28 composed of a cell-homing domain binding to a surface marker and of KLAKLAK2 (sequence KLAKLAKKLAKLAK), a moiety inducing apoptosis upon receptor-mediated internalization, has been described by our group.26,29 Such bimodal peptides have been used for depletion of malignant cells and organ-specific endothelial cells in preclinical animal models.26,30,31 Recently, we isolated a cyclic peptide WAT7 (amino acid sequence CSWKYWFGEC) based on its specific binding to ASCs.20 We identified Δ-decorin (ΔDCN), a proteolytic cleavage fragment of decorin, as the WAT7 receptor specifically expressed on the surface of CD34+PDGFRβ+CD31-CD45- WAPs and absent on MSCs in other organs.20Here, we investigated whether WAPs are required for obesity development in adulthood. By designing a new hunter-killer peptide that directs KLAKLAK2 to WAPs through WAT7/ΔDCN interaction, we depleted WAP in the mouse diet-induced obesity model. We demonstrate that WAP depletion suppresses WAT growth. We show that, in response to WAP deficiency, WAT becomes populated with beige adipocytes. Consistent with the reported thermogenic function of beige adipocytes,32,33 the observed WAT remodeling is associated with increased energy expenditure. We identify a population of PDGFRα-positive, PDGFRβ-negative ASCs reported recently22 as a population surviving WAP depletion and responsible for WAT browning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号