首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
There is a growing recognition for the importance of proteins with large intrinsically disordered (ID) segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions.  相似文献   

3.
4.
Viruses infect all kingdoms of life; their genomes vary from DNA to RNA and in size from 2kB to 1 MB or more. Viruses frequently employ disordered proteins, that is, protein products of virus genes that do not themselves fold into independent three-dimensional structures, but rather, constitute a versatile molecular toolkit to accomplish a range of functions necessary for viral infection, assembly, and proliferation. Interestingly, disordered proteins have been discovered in almost all viruses so far studied, whether the viral genome consists of DNA or RNA, and whatever the configuration of the viral capsid or other outer covering. In this review, I present a wide-ranging set of stories illustrating the range of functions of IDPs in viruses. The field is rapidly expanding, and I have not tried to include everything. What is included is meant to be a survey of the variety of tasks that viruses accomplish using disordered proteins.  相似文献   

5.
Accurate predictions of the three-dimensional structures of proteins from their amino acid sequences have come of age. AlphaFold, a deep learning-based approach to protein structure prediction, shows remarkable success in independent assessments of prediction accuracy. A significant epoch in structural bioinformatics was the structural annotation of over 98% of protein sequences in the human proteome. Interestingly, many predictions feature regions of very low confidence, and these regions largely overlap with intrinsically disordered regions (IDRs). That over 30% of regions within the proteome are disordered is congruent with estimates that have been made over the past two decades, as intense efforts have been undertaken to generalize the structure–function paradigm to include the importance of conformational heterogeneity and dynamics. With structural annotations from AlphaFold in hand, there is the temptation to draw inferences regarding the “structures” of IDRs and their interactomes. Here, we offer a cautionary note regarding the misinterpretations that might ensue and highlight efforts that provide concrete understanding of sequence-ensemble-function relationships of IDRs. This perspective is intended to emphasize the importance of IDRs in sequence-function relationships (SERs) and to highlight how one might go about extracting quantitative SERs to make sense of how IDRs function.  相似文献   

6.
BackgroundIntrinsically disordered proteins (IDPs) lack a stable tertiary structure in isolation. Remarkably, however, a substantial portion of IDPs undergo disorder-to-order transitions upon binding to their cognate partners. Structural flexibility and binding plasticity enable IDPs to interact with a broad range of partners. However, the broader network properties that could provide additional insights into the functional role of IDPs are not known.ResultsHere, we report the first comprehensive survey of network properties of IDP-induced sub-networks in multiple species from yeast to human. Our results show that IDPs exhibit greater-than-expected modularity and are connected to the rest of the protein interaction network (PIN) via proteins that exhibit the highest betweenness centrality and connect to fewer-than-expected IDP communities, suggesting that they form critical communication links from IDP modules to the rest of the PIN. Moreover, we found that IDPs are enriched at the top level of regulatory hierarchy.ConclusionOverall, our analyses reveal coherent and remarkably conserved IDP-centric network properties, namely, modularity in IDP-induced network and a layer of critical nodes connecting IDPs with the rest of the PIN.  相似文献   

7.
Intrinsically disordered proteins (IDPs), which lack folded structure and are disordered under nondenaturing conditions, have been shown to perform important functions in a large number of cellular processes. These proteins have interesting structural properties that deviate from the random-coil-like behavior exhibited by chemically denatured proteins. In particular, IDPs are often observed to exhibit significant compaction. In this study, we have analyzed the hydrodynamic radii of a number of IDPs to investigate the sequence determinants of this compaction. Net charge and proline content are observed to be strongly correlated with increased hydrodynamic radii, suggesting that these are the dominant contributors to compaction. Hydrophobicity and secondary structure, on the other hand, appear to have negligible effects on compaction, which implies that the determinants of structure in folded and intrinsically disordered proteins are profoundly different. Finally, we observe that polyhistidine tags seem to increase IDP compaction, which suggests that these tags have significant perturbing effects and thus should be removed before any structural characterizations of IDPs. Using the relationships observed in this analysis, we have developed a sequence-based predictor of hydrodynamic radius for IDPs that shows substantial improvement over a simple model based upon chain length alone.  相似文献   

8.
Intrinsically disordered proteins are very common in the eukaryotic proteome, and many of them are associated with diseases. Disordered proteins usually undergo a coupled binding and folding reaction and often interact with many different binding partners. Using double mutant cycles, we mapped the energy landscape of the binding interface for two interacting disordered domains and found it to be largely suboptimal in terms of interaction free energies, despite relatively high affinity. These data depict a frustrated energy landscape for interactions involving intrinsically disordered proteins, which is likely a result of their functional promiscuity.  相似文献   

9.
Guinier analysis allows model-free determination of the radius of gyration (Rg) of a biomolecule from X-ray or neutron scattering data, in the limit of very small scattering angles. Its range of validity is well understood for globular proteins, but is known to be more restricted for unfolded or intrinsically disordered proteins (IDPs). We have used ensembles of disordered structures from molecular dynamics simulations to investigate which structural properties cause deviations from the Guinier approximation at small scattering angles. We find that the deviation from the Guinier approximation is correlated with the polymer scaling exponent ν describing the unfolded ensemble. We therefore introduce an empirical, ν-dependent, higher-order correction term, to augment the standard Guinier analysis. We test the new fitting scheme using all-atom simulation data for several IDPs and experimental data for both an IDP and a destabilized mutant of a folded protein. In all cases tested, we achieve an accuracy of the inferred Rg within ~ 3% of the true Rg. The method is straightforward to implement and extends the range of validity to a maximum qRg of ~ 2 versus 1.1 for Guinier analysis. Compared with the Guinier or Debye approaches, our method allows data from wider angles with lower noise to be used to analyze scattering data accurately. In addition to Rg, our fitting scheme also yields estimates of the scaling exponent ν in excellent agreement with the reference ν determined from the underlying molecular ensemble.  相似文献   

10.
A significant part of the proteome is composed of intrinsically disordered proteins (IDPs). These proteins do not fold into a well-defined structure and behave like ordinary polymers. In this work, we consider IDPs that have the tendency to aggregate, model them as heteropolymers that contain a small number of associating monomers, and use computer simulations to compare the aggregation of such IDPs that are grafted to a surface or free in solution. We then discuss how such grafting may affect the analysis of in vitro experiments and could also be used to suppress harmful aggregation.  相似文献   

11.
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.  相似文献   

12.
13.
14.
Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such crowded environments, proteins are expected to behave differently than in vitro. It has been shown that the stability and the folding rate of a globular protein can be altered by the excluded volume effect produced by a high density of macromolecules. However, macromolecular crowding effects on intrinsically disordered proteins (IDPs) are less explored. These proteins can be extremely dynamic and potentially sample a wide ensemble of conformations under non-denaturing conditions. The dynamic properties of IDPs are intimately related to the timescale of conformational exchange within the ensemble, which govern target recognition and how these proteins function. In this work, we investigated the macromolecular crowding effects on the dynamics of several IDPs by measuring the NMR spin relaxation parameters of three disordered proteins (ProTα, TC1, and α-synuclein) with different extents of residual structures. To aid the interpretation of experimental results, we also performed an MD simulation of ProTα. Based on the MD analysis, a simple model to correlate the observed changes in relaxation rates to the alteration in protein motions under crowding conditions was proposed. Our results show that 1) IDPs remain at least partially disordered despite the presence of high concentration of other macromolecules, 2) the crowded environment has differential effects on the conformational propensity of distinct regions of an IDP, which may lead to selective stabilization of certain target-binding motifs, and 3) the segmental motions of IDPs on the nanosecond timescale are retained under crowded conditions. These findings strongly suggest that IDPs function as dynamic structural ensembles in cellular environments.  相似文献   

15.
This review summarizes the results of in‐cell Nuclear Magnetic Resonance, NMR, spectroscopic investigations of the eukaryotic and prokaryotic intrinsically disordered proteins, IDPs: α‐synuclein, prokaryotic ubiquitin‐like protein, Pup, tubulin‐related neuronal protein, Tau, phenylalanyl‐glycyl‐repeat‐rich nucleoporins, FG Nups, and the negative regulator of flagellin synthesis, FlgM. The results show that the cellular behavior of IDPs may differ significantly from that observed in the test tube.  相似文献   

16.
《Biophysical journal》2020,118(12):2952-2965
Intrinsically disordered proteins are proteins whose native functional states represent ensembles of highly diverse conformations. Such ensembles are a challenge for quantitative structure comparisons because their conformational diversity precludes optimal superimposition of the atomic coordinates necessary for deriving common similarity measures such as the root mean-square deviation of these coordinates. Here, we introduce superimposition-free metrics that are based on computing matrices of the Cα-Cα distance distributions within ensembles and comparing these matrices between ensembles. Differences between two matrices yield information on the similarity between specific regions of the polypeptide, whereas the global structural similarity is captured by the root mean-square difference between the medians of the Cα-Cα distance distributions of two ensembles. Together, our metrics enable rigorous investigations of structure-function relationships in conformational ensembles of intrinsically disordered proteins derived using experimental restraints or by molecular simulations and for proteins containing both structured and disordered regions.  相似文献   

17.
Many large-scale studies on intrinsically disordered proteins are implicitly based on the structural models deposited in the Protein Data Bank. Yet, the static nature of deposited models supplies little insight into variation of protein structure and function under diverse cellular and environmental conditions. While the computational predictability of disordered regions provides practical evidence that disorder is an intrinsic property of proteins, the robustness of disordered regions to changes in sequence or environmental conditions has not been systematically studied. We analyzed intrinsically disordered regions in the same or similar proteins crystallized independently and studied their sensitivity to changes in protein sequence and parameters of crystallographic experiments. The observed changes in the existence, position, and length of disordered regions indicate that their appearance in X-ray structures dramatically depends on changes in amino acid sequence and peculiarities of the crystallographic experiment. Our study also raises general questions regarding protein evolution and the regulation of protein structure, dynamics, and function via variations in cellular and environmental conditions.  相似文献   

18.
19.
Intrinsically disordered proteins (IDPs) are key components of regulatory networks that control crucial aspects of cell decision making. The intrinsically disordered transactivation domain (TAD) of tumor suppressor p53 mediates its interactions with multiple regulatory pathways to control the p53 homeostasis during the cellular response to genotoxic stress. Many cancer-associated mutations have been discovered in p53-TAD, but their structural and functional consequences are poorly understood. Here, by combining atomistic simulations, NMR spectroscopy, and binding assays, we demonstrate that cancer-associated mutations can significantly perturb the balance of p53 interactions with key activation and degradation regulators. Importantly, the four mutations studied in this work do not all directly disrupt the known interaction interfaces. Instead, at least three of these mutations likely modulate the disordered state of p53-TAD to perturb its interactions with regulators. Specifically, NMR and simulation analysis together suggest that these mutations can modulate the level of conformational expansion as well as rigidity of the disordered state. Our work suggests that the disordered conformational ensemble of p53-TAD can serve as a central conduit in regulating the response to various cellular stimuli at the protein–protein interaction level. Understanding how the disordered state of IDPs may be modulated by regulatory signals and/or disease associated perturbations will be essential in the studies on the role of IDPs in biology and diseases.  相似文献   

20.
为了降低固有不规则蛋白质预测模型中特征矩阵的稀疏性,提高预测模型的性能,提出一种利用氨基酸结构倾向性预测固有不规则蛋白质的方法.利用氨基酸结构倾向性将20种氨基酸进行分类,构建氨基酸简化集合,从间接角度提取氨基酸序列中蕴含的不规则结构特征,利用新的简化集合重新描述氨基酸序列,构建固有不规则蛋白质预测模型.预测结果表明,基于氨基酸结构倾向性的预测模型能够有效地挖掘氨基酸结构倾向性中隐藏的不规则结构特征信息,提高固有不规则蛋白质预测模型的预测精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号