首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parasitic nematodes represent formidable pathogens of humans, livestock and crop plants. Control of these parasites is almost exclusively dependent on a small group of anthelmintic drugs, the most important of which belong to the macrocyclic lactone class. The extensive use of these drugs to control the ubiquitous trichostrongylid parasites of grazing livestock has resulted in the emergence of both single and multi-drug resistance. The expectation is that this resistance will eventually occur in the human parasites such as the common and debilitating soil transmitted nematodes and vector-borne filarial nematodes. While the modes of action of anthelmintics such as ivermectin, have been elucidated, notably in the model nematode Caenorhabditis elegans, the molecular nature of this resistance remains to be fully determined. Here we show that the anterior amphids play a key role in ivermectin uptake and mutations in these sensory structures result in ivermectin resistance in C. elegans. Random genetic mutant screens, detailed analysis of existing amphid mutants and lipophilic dye uptake indicate that the non-motile ciliated amphid neurons are a major route of ivermectin ingress; the majority of the mutants characterised in this study are predicted to be involved in intraflagellar transport. In addition to a role in ivermectin resistance, a subset of the amphid mutants are resistant to the non-related benzimidazole class of anthelmintics, raising the potential link to a multi-drug resistance mechanism. The amphid structures are present in all nematodes and are clearly defined in a drug-sensitive strain of Haemonchus contortus. It is predicted that amphidial drug uptake and intraflagellar transport may prove to be significant in the development of single and multi-drug resistance in the nematode pathogens of veterinary and human importance.  相似文献   

2.
3.
Licking behaviour in cattle has been reported to account for the disposition of topically administered macrocyclic lactones. However, its impact on anthelmintic efficacy remains to be established. Therefore, we evaluated the impact of ivermectin exchange between cattle on the reduction in the faecal egg count (FEC) after pour-on administration in a group of 10 heifers experimentally infected with Ostertagia ostertagi and Cooperia oncophora. Four treated (500 μg/kg, pour-on) and six untreated animals were put together after treatment and plasma and faecal exposure to ivermectin as well as the FECs were evaluated before and over 40 days after treatment. Ivermectin was detected in plasma and faeces of the six untreated heifers, with maximal exposures two- to three-fold lower than the minimal exposures in treated animals. The interindividual variability of exposure was very high in untreated animals, with a ten-fold difference between the upper and lower limits compared with treated heifers, where there was only a two-fold difference. Anthelmintic efficacy, expressed as an average reduction of the FECs over the experimental period, was maximal in the treated group. In untreated heifers, anthelmintic efficacies ranged from zero to maximal efficacy, with intermediary values between 30% and 80%. The use of a classical pharmacodynamic model demonstrated a clear relationship between exposure and efficacy and enabled us to define the critical plasma or faecal ivermectin concentrations delimiting an exposure window associated with partial anthelmintic efficacy. This range of ivermectin plasma concentrations (0.1-1 ng/mL) could be considered as a potential selection window for anthelmintic resistance. Finally, our results show that macrocyclic lactone exchange between cattle after pour-on administration, resulting from natural grooming behaviour, can significantly impact on anthelmintic efficacy. This raises several issues such as the design of comparative clinical trials and the occurrence of partial efficacy which is considered a risk factor for the development of anthelmintic resistance.  相似文献   

4.
Anthelmintic resistance in parasitic nematodes of small ruminants is widespread and, in some parts of the world, threatens the sustainability of sheep production. The genetic changes underlying resistance to anthelmintics, particularly ivermectin (IVM), remain to be determined. The majority of studies to date have investigated target site mutations; relatively little attention has been paid to the role of changes in gene expression. In this study, we investigated the expression of putative drug transporter molecules, P-glycoproteins (Pgps), in Teladorsagia circumcincta, the predominant parasitic nematode species of sheep in the UK and the major anthelmintic resistant species. Utilising a degenerate PCR approach, 11 partial Pgp sequences were identified. Constitutive differences in gene expression between an IVM-susceptible (MTci2) and a multidrug-resistant (MTci5) isolate were determined for 10 of the Pgps using the ΔΔCt TaqMan® real-time PCR method. Gene expression differences were particularly marked in one of these genes, namely Tci-pgp-9. In the MTci5 isolate, statistically significant increases in Tci-pgp-9 expression, at the mRNA level, were observed across all life-cycle stages and most notably in eggs (55-fold increase). Comparison of the partial Tci-pgp-9 nucleotide sequences from MTci2 and MTci5 also identified high levels of polymorphism. This work has shown that constitutively increased expression in Tci-pgp-9, coupled with increased sequence polymorphism, could play a role in allowing multidrug-resistant T. circumcincta to survive IVM exposure. The genetic changes underpinning these gene expression changes remain to be elucidated and need to be investigated in other isolates. These changes could form the basis of an IVM resistance marker to monitor the spread of resistance and to evaluate management practices aimed at delaying its spread.  相似文献   

5.
The selection and the use of antiparasitic remedies in the animals in zoological gardens and those bred in captivity present one of the challenges to the wildlife veterinarians. The latter have to be flexible enough in the choice of medicines and schemes of treatment of the animals they take care of. The present study is aimed at adding more information in that respect. A number of cases of ivermectin treating of mammals, birds, reptiles, amphibians and fish bred in captivity are presented in it. The tolerance to the drug in the different animals, species of the parasites influenced by it, dosages, schemes of applying and some other peculiarities in the system animals – diseases – anthelmintic treatments are discussed.  相似文献   

6.
7.
The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans   总被引:2,自引:0,他引:2  
Most of the recent evidence suggests that the avermectin/milbemycin family of anthelmintics act via specific interactions with glutamate-gated chloride channels. These channels are encoded by a small family of genes in nematodes, though the composition of the gene family and the function of the individual members of the family may vary between species. We review our current knowledge concerning the properties of the glutamate-gated chloride channels from Caenorhabditis elegans and the related parasite, Haemonchus contortus. We conclude that the biological effects of the avermectins/milbemycins can be largely explained by the known pharmacology and distribution of the glutamate-gated chloride channels and that differences between the glutamate-gated chloride channels from different nematodes may underlie species-specific variations in anthelmintic action.  相似文献   

8.
The identification of genes associated with anthelmintic resistance can be facilitated in Haemonchus contortus by the ability of this species to hybridise with Haemonchus placei. Although the hybrid males are sterile, the lines can be rescued by backcrossing the females to either parental species. Resistance genes can be retained in Haemonchus hybrids, while the unwanted contortus background is removed through backcrossing to H. placei and anthelmintic selection of the progeny. Under this selection, genes involved in resistance would retain the H. contortus nucleotide sequence, while those that are not would either be H. placei or a random mixture of both, depending on the amount of backcrossing that had occurred. The first candidate gene to be tested in this system was a Haemonchus P-glycoprotein, hcpgp-1. hcpgp-1 was amplified, cloned and sequenced from H. contortus and H. placei. Two restriction sites were then identified in the sequenced product; one specific to H. contortus hcpgp-1 and the other found only in the H. placei gene. These genes were identified from macrocyclic lactone selected and non-selected worms by restricting PCR products from individual worms. Fitted occurrence of the H. contortus allele was 49% of unselected worms and 69% of macrocyclic lactone selected worms. The probability of this percentage occurring by chance was P=0.006. Thus macrocyclic lactone selection was acting to increase the percentage of hcpgp-1 from macrocyclic-lactone-resistant CAVRS.  相似文献   

9.
10.
Anthelmintic resistance is a major problem for the control of many parasitic nematode species and has become a major constraint to livestock production in many parts of the world. In spite of its increasing importance, there is still a poor understanding of the molecular and genetic basis of resistance. It is unclear which mutations contribute most to the resistance phenotype and how resistance alleles arise, are selected and spread in parasite populations. The main strategy used to identify mutations responsible for anthelmintic resistance has been to undertake experimental studies on candidate genes. These genes have been chosen predominantly on the basis of our knowledge of drug mode-of-action and the identification of mutations that can confer resistance in model organisms. The application of these approaches to the analysis of benzimidazole and ivermectin resistance is reviewed and the reasons for their relative success or failure are discussed. The inherent limitation of candidate gene studies is that they rely on very specific and narrow assumptions about the likely identity of resistance-associated genes. In contrast, forward genetic and functional genomic approaches do not make such assumptions, as illustrated by the successful application of these techniques in the study of insecticide resistance. Although there is an urgent need to apply these powerful approaches to anthelmintic resistance research, the basic methodologies and resources are still lacking. However, these are now being developed for the trichostrongylid nematode Haemonchus contortus and the current progress and research priorities in this area are discussed.  相似文献   

11.
12.
13.
    
  相似文献   

14.
15.
    
Alterations in protein expression associated with adriamycin resistance in a panel of variants derived from the poorly differentiated squamous cell lung carcinoma DLKP were investigated using 2‐D DIGE. Of the 80 proteins identified as being differentially expressed, 32 correlated to adriamycin resistance. Twenty‐four proteins showed positive correlations with drug resistance, 11 correlated directly with increase in the resistance (including NDPK, RPA2, CCT2, HSP70 and Annexin A1) while 13 proteins (including HNRP K and H1, aldehyde dehydrogenase (ALDH), stomatin and CCT3) increased to a similar level in all drug‐resistant variants. Fewer proteins showed an inverse correlation with resistance; two (protein disulphide isomerase (PDI) and HSP70 variant 1) displayed a similar decrease in all variants and six (including prohibitin (PHB) and EIF5A) correlated inversely with resistance. Three proteins (EEF1D, Actin G1 and Annexin 1) correlated with the invasive status of these variants. Some expected targets of adriamycin action showed correlation with resistance including RPA2 (critical for DNA damage repair), while others proteins involved in protection from ROS production (such as GST, peroxiredoxins and thioredoxins) did not. The proteomic analysis revealed a large number of changes in protein expression that may contribute to a more apoptosis‐resistant state. Many of these changes could provide novel targets for overcoming resistance.  相似文献   

16.
    
Macrocyclic lactones have been the most widely used drugs for equine parasite control during the past four decades. Unlike ivermectin, moxidectin exhibits efficacy against encysted cyathostomin larvae, and is reported to have persistent efficacy with substantially longer egg reappearance periods. However, shortened egg reappearance periods have been reported recently for both macrocyclic lactones, and these findings have raised several questions: (i) are egg reappearance period patterns different after ivermectin or moxidectin treatment? (ii) Are shortened egg reappearance periods associated with certain cyathostomin species or stages? (iii) How does moxidectin’s larvicidal efficacy affect egg reappearance period? To address these questions, 36 horses at pasture, aged 2–5 years old, were randomly allocated to three treatment groups: 1, moxidectin; 2, ivermectin; and 3, untreated control. Strongylid fecal egg counts were measured on a weekly basis, and the egg reappearance period was 5 weeks for both compounds. Strongylid worm counts were determined for all horses: 18 were necropsied at 2 weeks post-treatment (PT), and the remaining 18 at 5 weeks PT. Worms were identified to species morphologically and by internal transcribed spacer-2 (ITS-2) rDNA metabarcoding. Moxidectin and ivermectin were 99.9% and 99.7% efficacious against adults at 2 weeks post treatment, whereas the respective efficacies against luminal L4s were 84.3% and 69.7%. At 5 weeks PT, adulticidal efficacy was 88.3% and 57.6% for moxidectin and ivermectin, respectively, while the efficacy against luminal L4s was 0% for both drugs. Moxidectin reduced early L3 counts by 18.1% and 8.0% at 2 or 5 weeks, while the efficacies against late L3s and mucosal L4s were 60.4% and 21.2% at the same intervals, respectively. The luminal L4s surviving ivermectin treatment were predominantly Cylicocyclus (Cyc.) insigne. The ITS-2 rDNA metabarcoding was in good agreement with morphologic species estimates but suggested differential activity between moxidectin and ivermectin for several species, most notably Cyc. insigne and Cylicocyclus nassatus. This study was a comprehensive investigation of current macrocyclic lactone efficacy patterns and provided important insight into potential mechanisms behind shortened egg reappearance periods.  相似文献   

17.
    
Parasitic nematodes cause significant effects on humans each year, with the most prevalent being Ascaris lumbricoides. Benzimidazoles (BZ) are the most widely used anthelmintic drug in humans, and although the biology of resistance to this drug class is understood in some species, resistance is poorly characterized in ascarids. Models such as Caenorhabditis elegans were essential in developing our current understanding of BZ resistance, but more closely related model nematodes are needed to understand resistance in ascarids. Here, we propose a new ascarid model species that infects turkeys, Ascaridia dissimilis, to develop a better understanding of BZ resistance.  相似文献   

18.
    
  相似文献   

19.
    

Background

High intracellular levels of unbound iron can contribute to the production of reactive oxygen species (ROS) via the Fenton reaction, while depletion of iron limits the availability of iron-containing proteins, some of which have important functions in defence against oxidative stress. Vice versa increased ROS levels lead to the damage of proteins with iron sulphur centres. Thus, organisms have to coordinate and balance their responses to oxidative stress and iron availability. Our knowledge of the molecular mechanisms underlying the co-regulation of these responses remains limited. To discriminate between a direct cellular response to iron limitation and indirect responses, which are the consequence of increased levels of ROS, we compared the response of the α-proteobacterium Rhodobacter sphaeroides to iron limitation in the presence or absence of oxygen.

Results

One third of all genes with altered expression under iron limitation showed a response that was independent of oxygen availability. The other iron-regulated genes showed different responses in oxic or anoxic conditions and were grouped into six clusters based on the different expression profiles. For two of these clusters, induction in response to iron limitation under oxic conditions was dependent on the OxyR regulatory protein. An OxyR mutant showed increased ROS production and impaired growth under iron limitation.

Conclusion

Some R. sphaeroides genes respond to iron limitation irrespective of oxygen availability. These genes therefore reflect a “core iron response” that is independent of potential ROS production under oxic, iron-limiting conditions. However, the regulation of most of the iron-responsive genes was biased by oxygen availability. Most strikingly, the OxyR-dependent activation of a subset of genes upon iron limitation under oxic conditions, including many genes with a role in iron metabolism, revealed that elevated ROS levels were an important trigger for this response. OxyR thus provides a regulatory link between the responses to oxidative stress and to iron limitation in R. sphaeroides.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-794) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号