首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of long chain fatty acids (FA) with wild type (WT) fatty acid binding proteins (FABP) and engineered FABP mutants have been monitored to determine the equilibrium binding constants as well as the rate constants for binding and dissociation. These measurements have been done using the fluorescent probes, ADIFAB and ADIFAB2, that allow the determination of the free fatty acid (FFA) concentration in the reaction of FA with proteins and membranes. The results of these studies indicate that for WT proteins from adipocyte, heart, intestine, and liver, Kd values are in the nM range and affinities decrease with increasing aqueous solubility of the FA. Binding affinities for heart and liver are generally greater than those for adipocyte and intestine. Moreover, measurements of the rate constants indicate that binding equilibrium at 37øC is achieved within seconds for all FA and FABPs. These results, together with the level of serum (unbound) FFA, suggests a buffering action of FABPs that helps to maintain the intracellular concentration of FFA so that the flux of FFA between serum and cells occurs down a concentration gradient. Measurements of the temperature dependence of binding reveal that the free energy is predominately enthalpic and that the enthalpy of the reaction results from FA-FABP interactions within the binding cavity. The nature of these interactions were investigated by determining the thermodynamics of binding to engineered point mutants of the intestinal FABP. These measurements showed that binding affinities did not report accurately the changes in protein-FA interactions because changes in the binding entropy and enthalpy tend to compensate. For example, an alanine substitution for arginine 106 yields a 30 fold increase in binding affinity, because the loss in enthalpy due to the elimination of the favorable interaction between the FA carboxylate and Arg106, is more than compensated for by an increase in entropy. Thus understanding the effects of amino acid replacements on FA-FABP interactions requires measurements of enthalpy and entropy, in addition to affinity.  相似文献   

2.
3.
4.
5.
6.
A bacterium isolated from a dry soil sample collected from McCalla, AL, USA, converted linoleic acid to a novel compound, 12,13,17-trihydroxy-9 (Z)-octadecenoic acid (THOA). The organism is a Gram-positive, non-motile rod (0.5 μ m × 2 μ m). It was identified as a species of Clavibacter ALA2. The product was purified by high pressure liquid chromatography, and its structure was determined by 1H and 13C nuclear magnetic resonance and Fourier transform infrared spectroscopies, and by mass spectrometer. Maximum production of THOA with 25% conversion of the substrate was reached after 5–6 days of reaction. THOA was not further metabolized by strain ALA2. This is the first report of a 12,13,17-trihydroxy unsaturated fatty acid and its production by microbial transformation. Some dihydroxy intermediates were also detected. THOA has a structure similar to those of known plant self-defense substances. Received 13 January 1997/ Accepted in revised form 05 May 1997  相似文献   

7.
The blood-brain barrier (BBB), formed by the brain capillary endothelial cells, provides a protective barrier between the systemic blood and the extracellular environment of the CNS. Passage of fatty acids from the blood to the brain may occur either by diffusion or by proteins that facilitate their transport. Currently several protein families have been implicated in fatty acid transport. The focus of the present study was to identify the fatty acid transport proteins (FATPs) expressed in the brain microvessel endothelial cells and characterize their involvement in fatty acid transport across an in vitro BBB model. The major fatty acid transport proteins expressed in human brain microvessel endothelial cells (HBMEC), mouse capillaries and human grey matter were FATP-1, -4 and fatty acid binding protein 5 and fatty acid translocase/CD36. The passage of various radiolabeled fatty acids across confluent HBMEC monolayers was examined over a 30-min period in the presence of fatty acid free albumin in a 1 : 1 molar ratio. The apical to basolateral permeability of radiolabeled fatty acids was dependent upon both saturation and chain length of the fatty acid. Knockdown of various fatty acid transport proteins using siRNA significantly decreased radiolabeled fatty acid transport across the HBMEC monolayer. Our findings indicate that FATP-1 and FATP-4 are the predominant fatty acid transport proteins expressed in the BBB based on human and mouse expression studies. While transport studies in HBMEC monolayers support their involvement in fatty acid permeability, fatty acid translocase/CD36 also appears to play a prominent role in transport of fatty acids across HBMEC.  相似文献   

8.
The fatty acids of the triacylglycerol fraction of the latex of the rubber plant consists of 97% of a C18 furanoid fatty acid, 10,13-epoxy-11-methyloctadeca-10,12-dienoic. The free fatty acid fraction is composed of a more equally distributed mixture of 16:0, 18:0, 18:1, 18:2 and the furanoid acid. A novel dioxo fatty acid, 10,13-dioxo-11-methyloctadecanoic, was also isolated and characterized.  相似文献   

9.
Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a “push” (synthesis) and “pull” (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses.  相似文献   

10.
MUFAs are unsaturated FAs with one double bond and are derived from endogenous synthesis and dietary intake. Accumulating evidence has suggested that plasma and erythrocyte MUFA levels are associated with cardiometabolic disorders, including CVD, T2D, and metabolic syndrome (MS). Previous genome-wide association studies (GWASs) have identified seven loci for plasma and erythrocyte palmitoleic and oleic acid levels in populations of European origin. To identify additional MUFA-associated loci and the potential functional variant at each locus, we performed ethnic-specific GWAS meta-analyses and trans-ethnic meta-analyses in more than 15,000 participants of Chinese and European ancestry. We identified novel genome-wide significant associations for vaccenic acid at FADS1/2 and PKD2L1 [log10(Bayes factor) ≥ 8.07] and for gondoic acid at FADS1/2 and GCKR [log10(Bayes factor) ≥ 6.22], and also observed improved fine-mapping resolutions at FADS1/2 and GCKR loci. The greatest improvement was observed at GCKR, where the number of variants in the 99% credible set was reduced from 16 (covering 94.8 kb) to 5 (covering 19.6 kb, including a missense variant rs1260326) after trans-ethnic meta-analysis. We also confirmed the previously reported associations of PKD2L1, FADS1/2, GCKR, and HIF1AN with palmitoleic acid and of FADS1/2 and LPCAT3 with oleic acid in the Chinese-specific GWAS and the trans-ethnic meta-analyses. Pathway-based analyses suggested that the identified loci were in unsaturated FA metabolism and signaling pathways. Our findings provide novel insight into the genetic basis relevant to MUFA metabolism and biology.  相似文献   

11.
Uptake of nonesterified long-chain fatty acids (LCFAs) into many cell types and organs such as liver, heart, intestine, and skeletal muscle occurs primarily through a saturable, protein-mediated mechanism. Membrane proteins that increase the uptake of LCFAs, such as FAT/CD36 and fatty acid transport proteins, represent significant therapeutic targets for the treatment of metabolic disorders, including type 2 diabetes. However, currently available methods for the quantification of LCFA uptake neither allow for real-time measurements of uptake kinetics nor are ideally suited for the development of LCFA uptake inhibitors in high-throughput screens. To address both problems, we developed a LCFA uptake assay using a fluorescently labeled fatty acid and a nontoxic cell-impermeable quenching agent that allows fatty acid transport to be measured in real time using fluorescence plate readers or standard fluorescence microscopy. With this assay, we faithfully reproduced known differentiation- and hormone-induced changes in LCFA uptake by 3T3-L1 cells and determined LCFA uptake kinetics with previously unobtainable temporal resolution. Applications of this novel assay should facilitate new insights into the biology of fatty acid uptake and provide new means for obesity-related drug discovery.  相似文献   

12.
A photoaffinity labeling method was developed to identify and characterize high affinity fatty acid-binding proteins in membranes. The specific labeling of these sites requires the use of low concentrations (nanomolar) of the photoreactive fatty acid 11-m-diazirinophenoxy-[11-3H]undecanoate. It was delivered as a bovine serum albumin (BSA) complex which serves as a reservoir for fatty acid and thus allows precise control of unbound fatty acid concentrations. ThefadL protein ofE. coli, which is required for fatty acid permeation of its outer membrane, was labeled by the photoreactive fatty acid neither specifically nor saturably when the probe was added in the absence of BSA; however when a nanomolar concentration of the uncomplexed probe was maintained in the presence of BSA, the labeling of thefadL protein was highly specific and saturable. This photoaffinity labeling method was also used to characterize a 22 kDa, high affinity fatty acid-binding protein which we have recently identified in the plasma membrane of 3T3-L1 adipocytes. This protein bound the probe with a Kd of 216 nM. The approach described is easily capable of identifying membrane-bound fatty acid-binding proteins and can distinguish between those of high and low affinities for fatty acids. It represents a general method for the identification and characterization of fatty acid-binding proteins.Abbreviations BSA Bovine Serum Albumin - DAP m-Diazirinophenoxy - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis  相似文献   

13.
The objective of this study was to identify single nucleotide polymorphisms (SNPs) in the thioesterase (TE) domain of the bovine fatty acid synthase (FASN) gene and to evaluate the extent to which they were associated with beef fatty acid composition. The four exons in FASN that encode for the TE domain were sequenced, and three SNPs, AF285607:g.17924A>G, g.18663T>C and g.18727C>T, were identified. Purebred Angus bulls (n = 331) were classified into three genotype groups, g.17924AA (n = 121), g.17924AG (n = 168) and g.17924GG (n = 42). The g.17924A>G genotype was significantly associated with fatty acid composition of longissimus dorsi muscle of Angus bulls. Cattle with the g.17924GG genotype had lower myristic acid (C14:0; P < 0.0001), palmitic acid (C16:0, P < 0.05) and total saturated fatty acid contents (P < 0.01), greater health index (P < 0.001), oleic acid content (C18:1; P < 0.001) and total monounsaturated fatty acid concentration (P < 0.01) in the total lipids and triacylglycerols fraction than did those with the g.17924AA genotype. Because of the linkage disequilibrium between SNPs g.17924A>G and g.18663T>C, similar significant associations of fatty acid contents with the g.18663T>C genotypes were observed. In conclusion, the SNPs g.17924A>G and g.18663T>C may be used as DNA markers to select breeding stock that have a healthier fatty acid composition.  相似文献   

14.
Intestinal fatty acid binding protein (IFABP) interacts with biological membranes and delivers fatty acid (FA) into them via a collisional mechanism. However, the membrane-bound structure of the protein and the pathway of FA transfer are not precisely known. We used molecular dynamics (MD) simulations with an implicit membrane model to determine the optimal orientation of apo- and holo-IFABP (bound with palmitate) on an anionic membrane. In this orientation, the helical portal region, delimited by the alphaII helix and the betaC-betaD and betaE-betaF turns, is oriented toward the membrane whereas the putative beta-strand portal, delimited by the betaB-betaC, betaF-betaG, betaH-betaI turns and the N terminus, is exposed to solvent. Starting from the MD structure of holo-IFABP in the optimal orientation relative to the membrane, we examined the release of palmitate via both pathways. Although the domains can widen enough to allow the passage of palmitate, fatty acid release through the helical portal region incurs smaller conformational changes and a lower energetic cost.  相似文献   

15.
Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs.  相似文献   

16.
肝型脂肪酸结合蛋白研究进展   总被引:1,自引:0,他引:1  
肝型脂肪酸结合蛋白(liver fatty acid binding protein,L-FABP)是脂肪酸结合蛋白(fatty acid binding proteins,FABPs)家族重要的成员,在肝脏、小肠、肾脏等组织中均有表达。L-FABP在不饱和脂肪酸、饱和脂肪酸、胆固醇、胆汁酸等转运过程中扮演重要角色。目前研究显示L-FABP在脂肪肝、肝硬化以及肝癌发生发展中起到重要作用,并有望作为肝损伤的早期检测指标。此外,新近研究发现尿中L-FABP水平还可以用于预测1型糖尿病患者的临床结局。在2型糖尿病中,尿中L-FABP与糖尿病性肾病的病程有密切关系。主要就L-FABP的特性、结构及其与疾病的关系做一综述。  相似文献   

17.
18.
Background: We reported that urinary L-FABP reflected the progression of chronic kidney disease (CKD). This study is aimed to evaluate the clinical significance of urinary liver type fatty acid binding protein (L-FABP) as a biomarker for monitoring CKD. Methods: Urinary L-FABP was measured using human L-FABP ELISA kit (CMIC.Co., Ltd., Tokyo, Japan). The relations between urinary L-FABP and clinical parameters were evaluated in non-diabetic CKD (n = 48) for a year. In order to evaluate the influence of serum L-FABP derived from liver upon urinary L-FABP, both serum and urinary L-FABP were simultaneously measured in patients with CKD (n = 73). Results: For monitoring CKD, the cut-off value in urinary L-FABP was determined as 17.4 μg/g.cr. by using a receiver operating characteristics (ROC) curve. Renal function deteriorated significantly more in patients with ‘high’ urinary L-FABP (n = 36) than in those with ‘low’ L-FABP (n = 12). The decrease in creatinine clearance was accompanied by an increase in urinary L-FABP, but not in urinary protein. Serum L-FABP in patients with CKD was not correlated with urinary L-FABP. Conclusion: Urinary excretion of L-FABP increases with the deterioration of renal function. Serum L-FABP did not influence on urinary L-FABP. Urinary L-FABP may be a useful clinical biomarker for monitoring CKD.  相似文献   

19.
20.
Fatty acid (FA) transfer proteins extract FA from membranes and sequester them to facilitate their movement through the cytosol. Detailed structural information is available for these soluble protein–FA complexes, but the structure of the protein conformation responsible for FA exchange at the membrane is unknown. Staphylococcus aureus FakB1 is a prototypical bacterial FA transfer protein that binds palmitate within a narrow, buried tunnel. Here, we define the conformational change from a “closed” FakB1 state to an “open” state that associates with the membrane and provides a path for entry and egress of the FA. Using NMR spectroscopy, we identified a conformationally flexible dynamic region in FakB1, and X-ray crystallography of FakB1 mutants captured the conformation of the open state. In addition, molecular dynamics simulations show that the new amphipathic α-helix formed in the open state inserts below the phosphate plane of the bilayer to create a diffusion channel for the hydrophobic FA tail to access the hydrocarbon core and place the carboxyl group at the phosphate layer. The membrane binding and catalytic properties of site-directed mutants were consistent with the proposed membrane docked structure predicted by our molecular dynamics simulations. Finally, the structure of the bilayer-associated conformation of FakB1 has local similarities with mammalian FA binding proteins and provides a conceptual framework for how these proteins interact with the membrane to create a diffusion channel from the FA location in the bilayer to the protein interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号