首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein docking procedures carry out the task of predicting the structure of a protein–protein complex starting from the known structures of the individual protein components. More often than not, however, the structure of one or both components is not known, but can be derived by homology modeling on the basis of known structures of related proteins deposited in the Protein Data Bank (PDB). Thus, the problem is to develop methods that optimally integrate homology modeling and docking with the goal of predicting the structure of a complex directly from the amino acid sequences of its component proteins. One possibility is to use the best available homology modeling and docking methods. However, the models built for the individual subunits often differ to a significant degree from the bound conformation in the complex, often much more so than the differences observed between free and bound structures of the same protein, and therefore additional conformational adjustments, both at the backbone and side chain levels need to be modeled to achieve an accurate docking prediction. In particular, even homology models of overall good accuracy frequently include localized errors that unfavorably impact docking results. The predicted reliability of the different regions in the model can also serve as a useful input for the docking calculations. Here we present a benchmark dataset that should help to explore and solve combined modeling and docking problems. This dataset comprises a subset of the experimentally solved ‘target’ complexes from the widely used Docking Benchmark from the Weng Lab (excluding antibody–antigen complexes). This subset is extended to include the structures from the PDB related to those of the individual components of each complex, and hence represent potential templates for investigating and benchmarking integrated homology modeling and docking approaches. Template sets can be dynamically customized by specifying ranges in sequence similarity and in PDB release dates, or using other filtering options, such as excluding sets of specific structures from the template list. Multiple sequence alignments, as well as structural alignments of the templates to their corresponding subunits in the target are also provided. The resource is accessible online or can be downloaded at http://cluspro.org/benchmark , and is updated on a weekly basis in synchrony with new PDB releases. Proteins 2016; 85:10–16. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein-protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein-protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein-protein complexes. Starting from X-ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein-protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 A. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein-protein association and predicting of protein-protein complex structures.  相似文献   

3.
T cell receptors (TCRs) are immune proteins that specifically bind to antigenic molecules, which are often foreign peptides presented by major histocompatibility complex proteins (pMHCs), playing a key role in the cellular immune response. To advance our understanding and modeling of this dynamic immunological event, we assembled a protein–protein docking benchmark consisting of 20 structures of crystallized TCR/pMHC complexes for which unbound structures exist for both TCR and pMHC. We used our benchmark to compare predictive performance using several flexible and rigid backbone TCR/pMHC docking protocols. Our flexible TCR docking algorithm, TCRFlexDock, improved predictive success over the fixed backbone protocol, leading to near‐native predictions for 80% of the TCR/pMHC cases among the top 10 models, and 100% of the cases in the top 30 models. We then applied TCRFlexDock to predict the two distinct docking modes recently described for a single TCR bound to two different antigens, and tested several protein modeling scoring functions for prediction of TCR/pMHC binding affinities. This algorithm and benchmark should enable future efforts to predict, and design of uncharacterized TCR/pMHC complexes.  相似文献   

4.
The tertiary structures of protein complexes provide a crucial insight about the molecular mechanisms that regulate their functions and assembly. However, solving protein complex structures by experimental methods is often more difficult than single protein structures. Here, we have developed a novel computational multiple protein docking algorithm, Multi‐LZerD, that builds models of multimeric complexes by effectively reusing pairwise docking predictions of component proteins. A genetic algorithm is applied to explore the conformational space followed by a structure refinement procedure. Benchmark on eleven hetero‐multimeric complexes resulted in near‐native conformations for all but one of them (a root mean square deviation smaller than 2.5Å). We also show that our method copes with unbound docking cases well, outperforming the methodology that can be directly compared with our approach. Multi‐LZerD was able to predict near‐native structures for multimeric complexes of various topologies.Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Designed ankyrin repeat proteins (DARPins) are well‐established binding molecules based on a highly stable nonantibody scaffold. Building on 13 crystal structures of DARPin‐target complexes and stability measurements of DARPin mutants, we have generated a new DARPin library containing an extended randomized surface. To counteract the enrichment of unspecific hydrophobic binders during selections against difficult targets containing hydrophobic surfaces such as membrane proteins, the frequency of apolar residues at diversified positions was drastically reduced and substituted by an increased number of tyrosines. Ribosome display selections against two human caspases and membrane transporter AcrB yielded highly enriched pools of unique and strong DARPin binders which were mainly monomeric. We noted a prominent enrichment of tryptophan residues during binder selections. A crystal structure of a representative of this library in complex with caspase‐7 visualizes the key roles of both tryptophans and tyrosines in providing target contacts. These aromatic and polar side chains thus substitute the apolar residues valine, leucine, isoleucine, methionine, and phenylalanine of the original DARPins. Our work describes biophysical and structural analyses required to extend existing binder scaffolds and simplifies an existing protocol for the assembly of highly diverse synthetic binder libraries.  相似文献   

6.
The structure of proteins that are difficult to crystallize can often be solved by forming a noncovalent complex with a helper protein--a crystallization "chaperone." Although several such applications have been described to date, their handling usually is still very laborious. A valuable addition to the present repertoire of binding proteins is the recently developed designed ankyrin repeat protein (DARPin) technology. DARPins are built based on the natural ankyrin repeat protein fold with randomized surface residue positions allowing specific binding to virtually any target protein. The broad potential of these binding proteins for X-ray crystallography is illustrated by five cocrystal structures that have been determined recently comprising target proteins from distinct families, namely a sugar binding protein, two kinases, a caspase, and a membrane protein. This article reviews the opportunities of this technology for structural biology and the structural aspects of the DARPin-protein complexes.  相似文献   

7.
The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking). Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu). The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features) approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound benchmark set, significantly increasing the docking success rate.  相似文献   

8.
The abundance of oligomeric proteins makes them a frequent target for structure prediction. However, homologous proteins sometimes adopt different oligomerization states, rendering the prediction of structures of whole oligomers beyond the scope of comparative modeling. This obstacle can be overcome by combining comparative modeling of the single subunit of an oligomer with docking techniques, designed for predicting subunit-subunit interfaces. We present here algorithms for predicting the structures of homo-oligomers with C(n) or D(n) (n > 2) symmetry. The prediction procedure includes a symmetry-restricted docking step followed by a C(n) or D(n) oligomer-forming step, in which the dimers from the docking step are assembled to oligomers. The procedure is applied to each of the crystallographically independent subunits in 8 C(n) and 3 D(n) oligomers, producing very accurate predictions. It is further applied to a single monomer of the tick-borne encephalitis virus coat protein E (Target 10 of the CAPRI experiment). The predicted trimer ranked 30, obtained via rigid-body geometric-hydrophobic docking followed by C(n) oligomer formation, is very similar to the experimentally observed trimer formed by domain II of this protein. Furthermore, the predicted trimer formed from the separated domain I is also close to the experimental structure.  相似文献   

9.
Proteins and nucleic acids are key components in many processes in living cells, and interactions between proteins and nucleic acids are often crucial pathway components. In many cases, large flexibility of proteins as they interact with nucleic acids is key to their function. To understand the mechanisms of these processes, it is necessary to consider the 3D atomic structures of such protein–nucleic acid complexes. When such structures are not yet experimentally determined, protein docking can be used to computationally generate useful structure models. However, such docking has long had the limitation that the consideration of flexibility is usually limited to small movements or to small structures. We previously developed a method of flexible protein docking which could model ordered proteins which undergo large-scale conformational changes, which we also showed was compatible with nucleic acids. Here, we elaborate on the ability of that pipeline, Flex-LZerD, to model specifically interactions between proteins and nucleic acids, and demonstrate that Flex-LZerD can model more interactions and types of conformational change than previously shown.  相似文献   

10.
Tuncbag N  Keskin O  Nussinov R  Gursoy A 《Proteins》2012,80(4):1239-1249
The similarity between folding and binding led us to posit the concept that the number of protein-protein interface motifs in nature is limited, and interacting protein pairs can use similar interface architectures repeatedly, even if their global folds completely vary. Thus, known protein-protein interface architectures can be used to model the complexes between two target proteins on the proteome scale, even if their global structures differ. This powerful concept is combined with a flexible refinement and global energy assessment tool. The accuracy of the method is highly dependent on the structural diversity of the interface architectures in the template dataset. Here, we validate this knowledge-based combinatorial method on the Docking Benchmark and show that it efficiently finds high-quality models for benchmark complexes and their binding regions even in the absence of template interfaces having sequence similarity to the targets. Compared to "classical" docking, it is computationally faster; as the number of target proteins increases, the difference becomes more dramatic. Further, it is able to distinguish binders from nonbinders. These features allow performing large-scale network modeling. The results on an independent target set (proteins in the p53 molecular interaction map) show that current method can be used to predict whether a given protein pair interacts. Overall, while constrained by the diversity of the template set, this approach efficiently produces high-quality models of protein-protein complexes. We expect that with the growing number of known interface architectures, this type of knowledge-based methods will be increasingly used by the broad proteomics community.  相似文献   

11.
The accuracy of protein structures, particularly their binding sites, is essential for the success of modeling protein complexes. Computationally inexpensive methodology is required for genome-wide modeling of such structures. For systematic evaluation of potential accuracy in high-throughput modeling of binding sites, a statistical analysis of target-template sequence alignments was performed for a representative set of protein complexes. For most of the complexes, alignments containing all residues of the interface were found. The full interface alignments were obtained even in the case of poor alignments where a relatively small part of the target sequence (as low as 40%) aligned to the template sequence, with a low overall alignment identity (<30%). Although such poor overall alignments might be considered inadequate for modeling of whole proteins, the alignment of the interfaces was strong enough for docking. In the set of homology models built on these alignments, one third of those ranked 1 by a simple sequence identity criteria had RMSD<5 Å, the accuracy suitable for low-resolution template free docking. Such models corresponded to multi-domain target proteins, whereas for single-domain proteins the best models had 5 Å<RMSD<10 Å, the accuracy suitable for less sensitive structure-alignment methods. Overall, ∼50% of complexes with the interfaces modeled by high-throughput techniques had accuracy suitable for meaningful docking experiments. This percentage will grow with the increasing availability of co-crystallized protein-protein complexes.  相似文献   

12.
13.
While many structures of single protein components are becoming available, structural characterization of their complexes remains challenging. Methods for modeling assembly structures from individual components frequently suffer from large errors, due to protein flexibility and inaccurate scoring functions. However, when additional information is available, it may be possible to reduce the errors and compute near-native complex structures. One such type of information is a small angle X-ray scattering (SAXS) profile that can be collected in a high-throughput fashion from a small amount of sample in solution. Here, we present an efficient method for protein–protein docking with a SAXS profile (FoXSDock): generation of complex models by rigid global docking with PatchDock, filtering of the models based on the SAXS profile, clustering of the models, and refining the interface by flexible docking with FireDock. FoXSDock is benchmarked on 124 protein complexes with simulated SAXS profiles, as well as on 6 complexes with experimentally determined SAXS profiles. When induced fit is less than 1.5 Å interface Cα RMSD and the fraction residues of missing from the component structures is less than 3%, FoXSDock can find a model close to the native structure within the top 10 predictions in 77% of the cases; in comparison, docking alone succeeds in only 34% of the cases. Thus, the integrative approach significantly improves on molecular docking alone. The improvement arises from an increased resolution of rigid docking sampling and more accurate scoring.  相似文献   

14.
Comparative docking is based on experimentally determined structures of protein-protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template-based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface-based docking performed marginally better. The interface-based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2-fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure-based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.  相似文献   

15.
Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available.  相似文献   

16.
We describe a novel application of a fragment-based ligand docking technique; similar methods are commonly applied to the de novo design of ligands for target protein binding sites. We have used several new flexible docking and superposition tools, as well as a more conventional rigid-body (fragment) docking method, to examine NAD binding to the catalytic subunits of diphtheria (DT) and pertussis (PT) toxins, and to propose a model of the NAD–PT complex. Docking simulations with the rigid NAD fragments adenine and nicotinamide revealed that the low-energy dockings clustered in three distinct sites on the two proteins. Two of the sites were common to both fragments and were related to the structure of NAD bound to DT in an obvious way; however, the adenine subsite of PT was shifted relative to that of DT. We chose adenine/nicotinamide pairs of PT dockings from these clusters and flexibly superimposed NAD onto these pairs. A Monte Carlo–based flexible docking procedure and energy minimization were used to refine the modeled NAD–PT complexes. The modeled complex accounts for the sequence and structural similarities between PT and DT and is consistent with many results that suggest the catalytic importance of certain residues. A possible functional role for the structural difference between the two complexes is discussed. Proteins 31:282–298, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Hartmann C  Antes I  Lengauer T 《Proteins》2009,74(3):712-726
We describe a scoring and modeling procedure for docking ligands into protein models that have either modeled or flexible side-chain conformations. Our methodical contribution comprises a procedure for generating new potentials of mean force for the ROTA scoring function which we have introduced previously for optimizing side-chain conformations with the tool IRECS. The ROTA potentials are specially trained to tolerate small-scale positional errors of atoms that are characteristic of (i) side-chain conformations that are modeled using a sparse rotamer library and (ii) ligand conformations that are generated using a docking program. We generated both rigid and flexible protein models with our side-chain prediction tool IRECS and docked ligands to proteins using the scoring function ROTA and the docking programs FlexX (for rigid side chains) and FlexE (for flexible side chains). We validated our approach on the forty screening targets of the DUD database. The validation shows that the ROTA potentials are especially well suited for estimating the binding affinity of ligands to proteins. The results also show that our procedure can compensate for the performance decrease in screening that occurs when using protein models with side chains modeled with a rotamer library instead of using X-ray structures. The average runtime per ligand of our method is 168 seconds on an Opteron V20z, which is fast enough to allow virtual screening of compound libraries for drug candidates.  相似文献   

18.
Ribonuclease enzymes (RNases) play key roles in the maturation and metabolism of all RNA molecules. Computational simulations of the processes involved can help to elucidate the underlying enzymatic mechanism and is often employed in a synergistic approach together with biochemical experiments. Theoretical calculations require atomistic details regarding the starting geometries of the molecules involved, which, in the absence of crystallographic data, can only be achieved from computational docking studies. Fortunately, docking algorithms have improved tremendously in recent years, so that reliable structures of enzyme–ligand complexes can now be successfully obtained from computation. However, most docking programs are not particularly optimized for nucleotide docking. In order to assist our studies on the cleavage of RNA by the two most important ribonuclease enzymes, RNase A and RNase H, we evaluated four docking tools—MOE2009, Glide 5.5, QXP-Flo+0802, and Autodock 4.0—for their ability to simulate complexes between these enzymes and RNA oligomers. To validate our results, we analyzed the docking results with respect to the known key interactions between the protein and the nucleotide. In addition, we compared the predicted complexes with X-ray structures of the mutated enzyme as well as with structures obtained from previous calculations. In this manner, we were able to prepare the desired reaction state complex so that it could be used as the starting structure for further DFT/B3LYP QM/MM reaction mechanism studies.  相似文献   

19.
Kramer B  Rarey M  Lengauer T 《Proteins》1999,37(2):228-241
We report on a test of FLEXX, a fully automatic docking tool for flexible ligands, on a highly diverse data set of 200 protein-ligand complexes from the Protein Data Bank. In total 46.5% of the complexes of the data set can be reproduced by a FLEXX docking solution at rank 1 with an rms deviation (RMSD) from the observed structure of less than 2 A. This rate rises to 70% if one looks at the entire generated solution set. FLEXX produces reliable results for ligands with up to 15 components which can be docked in 80% of the cases with acceptable accuracy. Ligands with more than 15 components tend to generate wrong solutions more often. The average runtime of FLEXX on this test set is 93 seconds per complex on a SUN Ultra-30 workstation. In addition, we report on "cross-docking" experiments, in which several receptor structures of complexes with identical proteins have been used for docking all cocrystallized ligands of these complexes. In most cases, these experiments show that FLEXX can acceptably dock a ligand into a foreign receptor structure. Finally we report on screening runs of ligands out of a library with 556 entries against ten different proteins. In eight cases FLEXX is able to find the original inhibitor within the top 7% of the total library.  相似文献   

20.
Protein docking is essential for structural characterization of protein interactions. Besides providing the structure of protein complexes, modeling of proteins and their complexes is important for understanding the fundamental principles and specific aspects of protein interactions. The accuracy of protein modeling, in general, is still less than that of the experimental approaches. Thus, it is important to investigate the applicability of docking techniques to modeled proteins. We present new comprehensive benchmark sets of protein models for the development and validation of protein docking, as well as a systematic assessment of free and template-based docking techniques on these sets. As opposed to previous studies, the benchmark sets reflect the real case modeling/docking scenario where the accuracy of the models is assessed by the modeling procedure, without reference to the native structure (which would be unknown in practical applications). We also expanded the analysis to include docking of protein pairs where proteins have different structural accuracy. The results show that, in general, the template-based docking is less sensitive to the structural inaccuracies of the models than the free docking. The near-native docking poses generated by the template-based approach, typically, also have higher ranks than those produces by the free docking (although the free docking is indispensable in modeling the multiplicity of protein interactions in a crowded cellular environment). The results show that docking techniques are applicable to protein models in a broad range of modeling accuracy. The study provides clear guidelines for practical applications of docking to protein models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号