首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virtual and solution conformations of oligosaccharides   总被引:3,自引:0,他引:3  
D A Cumming  J P Carver 《Biochemistry》1987,26(21):6664-6676
The possibility that observed nuclear Overhauser enhancements and bulk longitudinal relaxation times, parameters measured by 1H NMR and often employed in determining the preferred solution conformation of biologically important molecules, are the result of averaging over many conformational states is quantitatively evaluated. Of particular interest was to ascertain whether certain 1H NMR determined conformations are "virtual" in nature; i.e., the fraction of the population of molecules actually found at any time within the subset of conformational space defined as the "solution conformation" is vanishingly small. A statistical mechanics approach was utilized to calculate an ensemble average relaxation matrix from which (NOE)'s and (T1)'s are calculated. Model glycosidic linkages in four oligosaccharides were studied. The solution conformation at any glycosidic linkage is properly represented by a normalized, Boltzmann distribution of conformers generated from an appropriate potential energy surface. The nature of the resultant population distributions is such that 50% of the molecular population is found within 1% of available microstates, while 99% of the molecular population occupies about 10% of the ensemble microstates, a number roughly equal to that sterically allowed. From this analysis we conclude that in many cases quantitative interpretation of NMR relaxation data, which attempts to define a single set of allowable torsion angle values consistent with the observed data, will lead to solution conformations that are either virtual or reflect torsion angle values possessed by a minority of the molecular population. On the other hand, calculation of ensemble average NMR relaxation data yields values in agreement with experimental results. Observed values of NMR relaxation data are the result of the complex interdependence of the population distribution and NOE (or T1) surfaces in conformational space. In conformational analyses, NMR data can therefore be used to test different population distributions calculated from empirical potential energy functions.  相似文献   

2.
Conformational equilibrium within the ubiquitous GNRA tetraloop motif was simulated at the ensemble level, including 10 000 independent all-atom molecular dynamics trajectories totaling over 110 µs of simulation time. This robust sampling reveals a highly dynamic structure comprised of 15 conformational microstates. We assemble a Markov model that includes transitions ranging from the nanosecond to microsecond timescales and is dominated by six key loop conformations that contribute to fluctuations around the native state. Mining of the Protein Data Bank provides an abundance of structures in which GNRA tetraloops participate in tertiary contact formation. Most predominantly observed in the experimental data are interactions of the native loop structure within the minor groove of adjacent helical regions. Additionally, a second trend is observed in which the tetraloop assumes non-native conformations while participating in multiple tertiary contacts, in some cases involving multiple possible loop conformations. This tetraloop flexibility can act to counterbalance the energetic penalty associated with assuming non-native loop structures in forming tertiary contacts. The GNRA motif has thus evolved not only to readily participate in simple tertiary interactions involving native loop structure, but also to easily adapt tetraloop secondary conformation in order to participate in larger, more complex tertiary interactions.  相似文献   

3.
Protein-protein interactions are often mediated by flexible loops that experience conformational dynamics on the microsecond to millisecond time scales. NMR relaxation studies can map these dynamics. However, defining the network of inter-converting conformers that underlie the relaxation data remains generally challenging. Here, we combine NMR relaxation experiments with simulation to visualize networks of inter-converting conformers. We demonstrate our approach with the apo Pin1-WW domain, for which NMR has revealed conformational dynamics of a flexible loop in the millisecond range. We sample and cluster the free energy landscape using Markov State Models (MSM) with major and minor exchange states with high correlation with the NMR relaxation data and low NOE violations. These MSM are hierarchical ensembles of slowly interconverting, metastable macrostates and rapidly interconverting microstates. We found a low population state that consists primarily of holo-like conformations and is a "hub" visited by most pathways between macrostates. These results suggest that conformational equilibria between holo-like and alternative conformers pre-exist in the intrinsic dynamics of apo Pin1-WW. Analysis using MutInf, a mutual information method for quantifying correlated motions, reveals that WW dynamics not only play a role in substrate recognition, but also may help couple the substrate binding site on the WW domain to the one on the catalytic domain. Our work represents an important step towards building networks of inter-converting conformational states and is generally applicable.  相似文献   

4.
Proteins are not rigid structures; they are dynamic entities, with numerous conformational isomers (substates). The dynamic nature of protein structures amplifies the structural variation of the transition state for chemical reactions performed by proteins. This suggests that utilizing a transition state ensemble to describe chemical reactions involving proteins may be a useful representation. Here we re-examine the nature of the transition state of protein chemical reactions (enzyme catalysis), considering both recent developments in chemical reaction theory (Marcus theory for SN2 reactions), and protein dynamics effects. The classical theory of chemical reactions relies on the assumption that a reaction must pass through an obligatory transition-state structure. The widely accepted view of enzymatic catalysis holds that there is tight binding of the substrate to the transition-state structure, lowering the activation energy. This picture, may, however, be oversimplified. The real meaning of a transition state is a surface, not a single saddle point on the potential energy surface. In a reaction with a "loose" transition-state structure, the entire transition-state region, rather than a single saddle point, contributes to reaction kinetics. Consequently, here we explore the validity of such a model, namely, the enzymatic modulation of the transition-state surface. We examine its utility in explaining enzyme catalysis. We analyse the possibility that instead of optimizing binding to a well-defined transition-state structure, enzymes are optimized by evolution to bind efficiently with a transition-state ensemble, with a broad range of activated conformations. For enzyme catalysis, the key issue is still transition state (ensemble) stabilization. The source of the catalytic power is the modulation of the transition state. However, our definition of the transition state is the entire transition-state surface rather just than a single well-defined structure. This view of the transition-state ensemble is consistent with the nature of the protein molecule, as embodied and depicted in the protein energy landscape of folding, and binding, funnels.  相似文献   

5.
6.
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that regulate cell growth, differentiation, motility, and metabolism. Here, we review recent advancements in RTK structure determination and in the understanding of RTK activation. We argue that further progress in the field will necessitate new ways of thinking, and we introduce the concept that RTK dimers explore ensembles of microstates, each characterized by different kinase domain dimer conformations, but the same extracellular domain dimer structure. Many microstates are phosphorylation-competent and ensure the phosphorylation of one specific tyrosine. The prevalence of each microstate correlates with its stability. A switch in ligand will lead to a switch in the extracellular domain configuration and to a subsequent switch in the ensemble of microstates. This model can explain how different ligands produce specific phosphorylation patterns, how receptor overexpression leads to enhanced signaling even in the absence of activating ligands, and why RTK kinase domain structures have remained unresolved in cryogenic electron microscopy studies.  相似文献   

7.
8.
Verkhivker GM 《Biopolymers》2004,75(5):420-433
Conformational transitions coupled to binding are studied for the p27(Kip1) protein which undergoes a functional disorder-to-order folding transition during tertiary complex formation with the phosphorylated cyclin A-cyclin-dependent kinase 2 (Cdk2) binary complex. Temperature-induced Monte Carlo simulations of p27(Kip1) unfolding-unbinding carried out from the crystal structure of the tertiary complex have revealed a systematic trend in the hierarchy of structural loss for p27(Kip1) and a considerable difference in mobility of p27(Kip1) secondary structure elements. The most persistent interactions of p27(Kip1) at the intermolecular interface during unfolding-unbinding simulations are formed by beta-hairpin and beta-strand that on average maintain their structural integrity considerably longer than other p27(Kip1) elements. We have found that the ensemble of unfolded p27(Kip1) conformations is characterized by transitions between mostly unbound, collapsed conformations and entropically favorable p27(Kip1) conformations, which are weakly bound to the cyclin A side of the binary complex. The results of this study are consistent with the experimental evidence pointing to this region of the intermolecular interface as a potential initiation docking site during binding reaction and may reconcile conflicting experimental hypotheses on the recognition of substrate recruitment motifs.  相似文献   

9.
Retention of required structural and functional properties of proteins in species adapted to different temperatures and pressures is achieved through variation in amino acid sequence and accumulation of small organic solutes that stabilize protein traits. Conservation of ligand binding and catalytic rate can be achieved by minor differences in sequence. For orthologs of lactate dehydrogenase-A (A4-LDH) temperature adaptation may involve only a single amino acid substitution. Adaptation involves changes in conformational mobility of regions of A4-LDH that undergo movement during ligand binding, movements that are rate-limiting to catalysis. A model that integrates adaptations in sequence and intracellular milieu is developed on the basis of conformational microstates. Although orthologs of different thermally adapted species vary in stability, at physiological temperatures it is hypothesized that a similar ensemble of conformational microstates exists for all orthologs. Organic solutes stabilize this ensemble of microstates. Differences among orthologs in responses to organic solutes at a common temperature lead to similar responses at normal body temperatures. Because protein stability increases at high protein concentrations, intrinsic stabilities of proteins may reflect the protein concentrations of the cellular compartments in which they occur. Protein–stabilizing solutes like trimethylamine-N-oxide (TMAO) conserve protein function and structure at elevated hydrostatic pressures.  相似文献   

10.
The nature of flexibility in the helix‐turn‐helix region of E. coli trp aporepressor has been unexplained for many years. The original ensemble of nuclear magnetic resonance (NMR structures showed apparent disorder, but chemical shift and relaxation measurements indicated a helical region. Nuclear Overhauser effect (NOE) data for a temperature‐sensitive mutant showed more helical character in its helix‐turn‐helix region, but nevertheless also led to an apparently disordered ensemble. However, conventional NMR structure determination methods require all structures in the ensemble to be consistent with every NOE simultaneously. This work uses an alternative approach in which some structures of the ensemble are allowed to violate some NOEs to permit modeling of multiple conformational states that are in dynamic equilibrium. Newly measured NOE data for wild‐type aporepressor are used as time‐averaged distance restraints in molecular dynamics simulations to generate an ensemble of helical conformations that is more consistent with the observed NMR data than the apparent disorder in the previously reported NMR structures. The results indicate the presence of alternating helical conformations that provide a better explanation for the flexibility of the helix‐turn‐helix region of trp aporepressor. Structures representing these conformations have been deposited with PDB ID: 5TM0. Proteins 2017; 85:731–740. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
12.
Characterizing ensembles of intrinsically disordered proteins is experimentally challenging because of the ill-conditioned nature of ensemble determination with limited data and the intrinsic fast dynamics of the conformational ensemble. Amide I two-dimensional infrared (2D IR) spectroscopy has picosecond time resolution to freeze structural ensembles as needed for probing disordered-protein ensembles and conformational dynamics. Also, developments in amide I computational spectroscopy now allow a quantitative and direct prediction of amide I spectra based on conformational distributions drawn from molecular dynamics simulations, providing a route to ensemble refinement against experimental spectra. We performed a Bayesian ensemble refinement method on Ala–Ala–Ala against isotope-edited Fourier-transform infrared spectroscopy and 2D IR spectroscopy and tested potential factors affecting the quality of ensemble refinements. We found that isotope-edited 2D IR spectroscopy provides a stringent constraint on Ala–Ala–Ala conformations and returns consistent conformational ensembles with the dominant ppII conformer across varying prior distributions from many molecular dynamics force fields and water models. The dominant factor influencing ensemble refinements is the systematic frequency uncertainty from spectroscopic maps. However, the uncertainty of conformer populations can be significantly reduced by incorporating 2D IR spectra in addition to traditional Fourier-transform infrared spectra. Bayesian ensemble refinement against isotope-edited 2D IR spectroscopy thus provides a route to probe equilibrium-complex protein ensembles and potentially nonequilibrium conformational dynamics.  相似文献   

13.
All members of the Src family of nonreceptor protein tyrosine kinases are phosphorylated and subsequently down-regulated by the C-terminal Src kinase, Csk. Although the recognition of Src protein substrates is essential for a diverse set of signaling events linked to cellular growth and differentiation, the factors controlling this critical protein-protein interaction are not well known. To understand how Csk recognizes Src, the chemical/physical events that modulate apparent substrate affinity and turnover were investigated. Src is phosphorylated in a biphasic manner in rapid quench flow experiments, suggesting that the phosphoryl transfer step is fast and highly favorable and does not limit overall turnover. As opposed to other kinase-substrate pairs, turnover is not limited by the physical release of ADP based on stopped-flow fluorescence and catalytic trapping experiments, suggesting that other steps control net phosphorylation. The K(d) for Src is considerably larger than the K(m) based on single turnover kinetic and equilibrium sedimentation experiments. Taken together, the data are consistent with a mechanism whereby Csk achieves a low K(m) for the substrate Src, not by stabilizing protein-protein interactions but rather by facilitating a fast phosphoryl transfer step. In this manner, the phosphoryl transfer step functions as a chemical clamp facilitating substrate recognition.  相似文献   

14.
The native states of proteins exist as an ensemble of conformationally similar microstates. The fluctuations among different microstates are of great importance for the functions and structural stability of proteins. Here, we demonstrate that single molecule atomic force microscopy (AFM) can be used to directly probe the existence of multiple folded microstates. We used the AFM to repeatedly stretch and relax a recombinant tenascin fragment TNfnALL to allow the fibronectin type III (FnIII) domains to undergo repeated unfolding/refolding cycles. In addition to the native state, we discovered that some FnIII domains can refold from the unfolded state into a previously unrecognized microstate, N* state. This novel state is conformationally similar to the native state, but mechanically less stable. The native state unfolds at approximately 120 pN, while the N* state unfolds at approximately 50 pN. These two distinct populations of microstates constitute the ensemble of the folded states for some FnIII domains. An unfolded FnIII domain can fold into either one of the two microstates via two distinct folding routes. These results reveal the dynamic and heterogeneous picture of the folded ensemble for some FnIII domains of tenascin, which may carry important implications for the mechanical functions of tenascins in vivo.  相似文献   

15.
We describe a convenient and simple continuous spectrophotometric method for the determination of mitogen-activated protein kinase (MAPK) kinase activity with its protein substrate. The assay relies on the measurement of phosphoprotein product generated in the first step of the MAPK kinase reaction. Dephosphorylation of the phosphoprotein is coupled to a MAPK phosphatase to generate phosphate, which is then used as the substrate of purine nucleoside phosphorylase to catalyze the N-glycosidic cleavage of 2-amino 6-mercapto 7-methyl purine ribonucleoside. Of the reaction products ribose 1-phosphate and 2-amino 6-mercapto 7-methylpurine, the latter has a high absorbance at 360nm relative to the nucleoside and, hence, provides a spectrophotometric signal that can be continuously followed. In the presence of excess phosphatase, the phosphorylated protein substrate molecules undergo dephosphorylation almost immediately after their formation; the steady-state use of the resultant inorganic phosphate is a reflection of the constant initial velocity of the exchange reaction. The validity of this method has been confirmed by using it to measure the activities of MEK1 (MAPK/ERK kinase 1) and MKK6 (MAPK kinase 6) toward their physiological substrates. Our findings of the MAPK kinases in the current study provide evidence that the substrate binding affinities of this subfamily of protein kinases are at the submicromolar concentration.  相似文献   

16.
17.
《Proteins》2018,86(5):501-514
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure‐based and physics‐based atomistic force field with an efficient sampling strategy is adopted to simulate a model di‐domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low‐energy structures and the minimum‐size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small‐angle X‐ray scattering data. It is illustrated that the regularizations of energy and ensemble‐size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high‐energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure‐ensemble optimizations with a topology‐based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates.  相似文献   

18.
Surfaces of many binding domains are plastic, enabling them to interact with multiple targets. An understanding of how they bind and recognize their partners is therefore predicated on characterizing such dynamic interfaces. Yet, these interfaces are difficult to study by standard biophysical techniques that often ‘freeze’ out conformations or that produce data averaged over an ensemble of conformers. In this study, we used NMR spectroscopy to study the interaction between the C-terminal SH3 domain of CIN85 and ubiquitin that involves the ‘classical’ binding sites of these proteins. Notably, chemical shift titration data of one target with another and relaxation dispersion data that report on millisecond time scale exchange processes are both well fit to a simple binding model in which free protein is in equilibrium with a single bound conformation. However, dissociation constants and chemical shift differences between free and bound states measured from both classes of experiment are in disagreement. It is shown that the data can be reconciled by considering three-state binding models involving two distinct bound conformations. By combining titration and dispersion data, kinetic and thermodynamic parameters of the three-state binding reaction are obtained along with chemical shifts for each state. A picture emerges in which one bound conformer has increased entropy and enthalpy relative to the second and chemical shifts similar to that of the free state, suggesting a less packed interface. This study provides an example of the interplay between entropy and enthalpy to fine-tune molecular interactions involving the same binding surfaces.  相似文献   

19.
Arachidonic acid has been implicated to play a role in physiological and pathophysiological processes and is selectively released by the 85-kDa cytosolic phospholipase A(2) (cPLA(2)). The activity of cPLA(2) is regulated by calcium, translocating the enzyme to its substrate, and by phosphorylation by a mitogen-activated protein kinase (MAPK) family member and a MAPK-activated protein kinase. In this study, the signal transduction pathways in growth factor-induced phosphorylation of p42/44(MAPK) and cPLA(2) activation were investigated in Her14 fibroblasts. p42/44(MAPK) in response to epidermal growth factor was not only phosphorylated via the Raf-MEK pathway but mainly through protein kinase C (PKC) or a related or unrelated kinase in which the phosphorylated p42/44(MAPK) corresponded with cPLA(2) activity. Serum-induced phosphorylation of p42/44(MAPK) also corresponded with cPLA(2) activity but is predominantly mediated via Raf-MEK and partly through PKC or a related or unrelated kinase. In contrast, activation of PKC by phorbol ester did not result in increased cPLA(2) activity, while p42/44(MAPK) is phosphorylated, mainly via Raf-MEK and through MEK. Moreover, p42/44(MAPK) phosphorylation is present in quiescent and proliferating cells, and p42/44(MAPK) is entirely phosphorylated via Raf-MEK, but it only corresponds to cPLA(2) activity in the former cells. Collectively, these data show that p42/44(MAPK) in proliferating, quiescent, and stimulated cells is phosphorylated by various signal transduction pathways, suggesting the activation of different populations of p42/44(MAPK) and cPLA(2).  相似文献   

20.
Ground-state dynamics in RNA is a critical precursor for structural adaptation observed ubiquitously in protein-RNA recognition. A tertiary conformational analysis of the stem-loop structural element in the transactivation response element (TAR) from human immunodeficiency virus type 1 (HIV-I) RNA is presented using recently introduced NMR methods that rely on the measurement of residual dipolar couplings (RDC) in partially oriented systems. Order matrix analysis of RDC data provides evidence for inter-helical motions that are of amplitude 46(+/-4) degrees, of random directional character, and that are executed about an average conformation with an inter-helical angle between 44 degrees and 54 degrees. The generated ensemble of TAR conformations have different organizations of functional groups responsible for interaction with the trans-activator protein Tat, including conformations similar to the previously characterized bound-state conformation. These results demonstrate the utility of RDC-NMR for simultaneously characterizing RNA tertiary dynamics and average conformation, and indicate an avenue for TAR complex formation involving tertiary structure capture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号