首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aleksa K  Nava-Ocampo A  Koren G 《Chirality》2009,21(7):674-680
Ifosfamide (IF), a potent chemotherapeutic agent for solid tumors, is known to cause high rates of nephrotoxicity in children with cancer, which is most likely due to the renal production of the metabolite chloroacetaldehyde. Using plasma samples obtained from pediatric oncology patients, we developed a simple nonderivatizing enantioselective liquid chromatography mass spectrometry method to detect the (R) and (S)-2- and 3-dechloroethylifosfamide metabolites. The (R) and (S)-enantiomers of the 2- and 3-DCEIF (N-3-dechlroethylifosfamide) were detectable in all 22 patients' samples with levels ranging from 9.9 to 238.7 ng/ml for (R)-2-DCEIF, 15.8 to 663.0 ng/ml for (S)-2-DCEIF, 20.8 to 852.8 ng/l for (R)-3-DCEIF and 28.0 to 862.0 ng/ml for (S)-3-DCEIF. In addition, the lower limit of quantification for this method is 1 ng/ml. Future studies should concentrate on (R) or (S) production of the 2-DCEIF and 3-DCEIF and subsequently chloroacetaldehyde formation with the aim of considering the administration of only the (R)-IF as its metabolism results in a lower production of chloroacetaldehyde.  相似文献   

3.
Measurements of plasma free fatty acids (FFA) concentration and isotopic enrichment are commonly used to evaluate FFA metabolism. Until now, gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) was the best method to measure isotopic enrichment in the methyl derivatives of 13C-labeled fatty acids. Although IRMS is excellent for analyzing enrichment, it requires time-consuming derivatization steps and is not optimal for measuring FFA concentrations. We developed a new, rapid, and reliable method for simultaneous quantification of 13C-labeled fatty acids in plasma using high-performance liquid chromatography-mass spectrometry (HPLC/MS). This method involves a very quick Dole extraction procedure and direct injection of the samples on the HPLC system. After chromatographic separation, the samples are directed to the mass spectrometer for electrospray ionization (ESI) and analysis in the negative mode using single ion monitoring. By employing equipment with two columns connected parallel to a mass spectrometer, we can double the throughput to the mass spectrometer, reducing the analysis time per sample to 5 min. Palmitate flux measured using this approach agreed well with the GC/C/IRMS method. This HPLC/MS method provides accurate and precise measures of FFA concentration and enrichment.  相似文献   

4.
5.
Recent developments in chromatography, such as ultra-HPLC and superficially porous particles, offer significantly improved peptide separation. The narrow peak widths, often only several seconds, can permit a 15-min liquid chromatography run to have a similar peak capacity as a 60-min run using traditional HPLC approaches. In theory, these larger peak capacities should provide higher protein coverage and/or more protein identifications when incorporated into a proteomic workflow. We initially observed a decrease in protein coverage when implementing these faster chromatographic approaches, due to data-dependent acquisition (DDA) settings that were not properly set to match the narrow peak widths resulting from newly implemented, fast separation techniques. Oversampling of high-intensity peptides lead to low protein-sequence coverage, and tandem mass spectra (MS/MS) from lower-intensity peptides were of poor quality, as automated MS/MS events were occurring late on chromatographic peaks. These observations led us to optimize DDA settings to use these fast separations. Optimized DDA settings were applied to the analysis of Trypanosome brucei peptides, yielding peptide identifications at a rate almost five times faster than previously used methodologies. The described approach significantly improves protein identification workflows that use typical available instrumentation.  相似文献   

6.
A major challenge facing current mass spectrometry (MS)-based proteomics research is the large concentration range displayed in biological systems, which far exceeds the dynamic range of commonly available mass spectrometers. One approach to overcome this limitation is to improve online reversed-phase liquid chromatography (RP-LC) separation methodologies. LC mobile-phase modifiers are used to improve peak shape and increase sample load tolerance. Trifluoroacetic acid (TFA) is a commonly used mobile-phase modifier, as it produces peptide separations that are far superior to other additives. However, TFA leads to signal suppression when incorporated with electrospray ionization (ESI), and thus, other modifiers, such as formic acid (FA), are used for LC-MS applications. FA exhibits significantly less signal suppression, but is not as effective of a modifier as TFA. An alternative mobile-phase modifier is the combination of FA and ammonium formate (AF), which has been shown to improve peptide separations. The ESI-MS compatibility of this modifier has not been investigated, particularly for proteomic applications. This work compares the separation metrics of mobile phases modified with FA and FA/AF and explores the use of FA/AF for the LC-MS analysis of tryptic digests. Standard tryptic-digest peptides were used for comparative analysis of peak capacity and sample load tolerance. The compatibility of FA/AF in proteomic applications was examined with the analysis of soluble proteins from canine prostate carcinoma tissue. Overall, the use of FA/AF improved online RP-LC separations and led to significant increases in peptide identifications with improved protein sequence coverage.  相似文献   

7.
Tocopherols and tocotrienols are metabolized via hydroxylation and oxidation of their hydrophobic side chain to generate 13′-hydroxychromanols (13′-OHs) and various carboxychromanols, which can be further metabolized by conjugation including sulfation. Recent studies indicate that long-chain carboxychromanols, especially 13′-carboxychromanol (13′-COOH), appear to be more bioactive than tocopherols in anti-inflammatory and anticancer actions. To understand the potential contribution of metabolites to vitamin E-mediated effects, an accurate assay is needed to evaluate bioavailability of these metabolites. Here we describe an LC/MS/MS assay for quantifying vitamin E metabolites using negative polarity ESI. This assay includes a reliable sample extraction procedure with efficacy of ≥ 89% and interday/intraday variation of 3–11% for major metabolites. To ensure accurate quantification, short-chain, long-chain, and sulfated carboxychromanols are included as external/internal standards. Using this assay, we observed that sulfated carboxychromanols are the primary metabolites in the plasma of rodents fed with γ-tocopherol or δ-tocopherol. Although plasma levels of 13′-COOHs and 13′-OHs are low, high concentrations of these compounds are found in feces. Our study demonstrates an LC/MS/MS assay for quantitation of sulfated and unconjugated vitamin E metabolites, and this assay will be useful for evaluating the role of these metabolites in vivo.  相似文献   

8.
9.
Ceramides (CERs) in the upper layer of the skin, the stratum corneum (SC), play a key role in the skin barrier function. In human SC, the literature currently reports 11 CER subclasses that have been identified. In this paper, a novel quick and robust LC/MS method is presented that allows the separation and analysis of all known human SC CER subclasses using only limited sample preparation. Besides all 11 known and identified subclasses, a 3D multi-mass chromatogram shows the presence of other lipid subclasses. Using LC/MS/MS with an ion trap (IT) system, a Fourier transform-ion cyclotron resonance system, and a triple quadrupole system, we were able to identify one of these lipid subclasses as a new CER subclass: the ester-linked ω-hydroxy fatty acid with a dihydrosphingosine base (CER [EOdS]). Besides the identification of a new CER subclass, this paper also describes the applicability and robustness of the developed LC/MS method by analyzing three (biological) SC samples: SC from human dermatomed skin, human SC obtained by tape stripping, and SC from full-thickness skin explants. All three biological samples showed all known CER subclasses and slight differences were observed in CER profile.  相似文献   

10.
Human apolipoprotein B100 (apoB100) has 19 potential N-glycosylation sites, and 16 asparagine residues were reported to be occupied by high-mannose type, hybrid type, and monoantennary and biantennary complex type oligosaccharides. In the present study, a site-specific glycosylation analysis of apoB100 was carried out using reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI MS/MS). ApoB100 was reduced, carboxymethylated, and then digested by trypsin or chymotrypsin. The complex mixture of peptides and glycopeptides was subjected to LC/ESI MS/MS, where product ion spectra of the molecular ions were acquired data-dependently. The glycopeptide ions were extracted and confirmed by the presence of carbohydrate-specific fragment ions, such as m/z 204 (HexNAc) and 366 (HexHexNAc), in the product ion spectra. The peptide moiety of glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the product ion spectrum, and the oligosaccharide moiety was deduced from the calculated molecular mass of the oligosaccharide. The heterogeneity of carbohydrate structures at 17 glycosylation sites was determined using this methodology. Our data showed that Asn2212, not previously identified as a site of glycosylation, could be glycosylated. It was also revealed that Asn158, 1341, 1350, 3309, and 3331 were occupied by high-mannose type oligosaccharides, and Asn 956, 1496, 2212, 2752, 2955, 3074, 3197, 3438, 3868, 4210, and 4404 were predominantly occupied by mono- or disialylated oligosaccharides. Asn3384, the nearest N-glycosylation site to the LDL-receptor binding site (amino acids 3359-3369), was occupied by a variety of oligosaccharides, including high-mannose, hybrid, and complex types. These results are useful for understanding the structure of LDL particles and oligosaccharide function in LDL-receptor ligand binding.  相似文献   

11.
Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood.  相似文献   

12.
A simple, specific, and sufficiently sensitive liquid chromatography-tandem mass spectrometry (negative-ion electrospray ionization) methodology to determine mevalonic acid (MVA) in human plasma is described, and its application to the analysis of rat plasma MVA levels after rosuvastatin administration is demonstrated. The method was validated over the linearity range of 0.5-50.0 ng/ml (r(2) > 0.99) using deuterated MVA as an internal standard. The lower limit of quantification was 0.5 ng/ml. The assay procedure involved the isolation of MVA from plasma samples using solid-phase extraction. Chromatographic separation was achieved on a HyPurity Advance column with a mobile phase consisting of ammonium formate buffer (10 mM, pH 8.0) and acetonitrile (70:30, v/v). Excellent precision and accuracy were observed. MVA and deuterated mevalonolactone were stable in water and plasma under different storage and processing conditions. The recovery observed was low, which was attributable to a significant matrix effect. A significant decrease (30-40%; P < 0.05) was observed in rat plasma MVA levels after rosuvastatin administration.  相似文献   

13.
14.
15.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

16.
17.
To evaluate bile acid (BA) metabolism in detail, we established a method for analyzing BA composition in various tissues and intestinal contents using ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). Twenty-two individual BAs were determined simultaneously from extracts. We applied this method to define the differences in BA metabolism between two rat strains, WKAH and DA. The amount of total bile acids (TBAs) in the liver was significantly higher in WKAH than in DA rats. In contrast, TBA concentration in jejunal content, cecal content, colorectal content, and feces was higher in DA rats than in WKAH rats. Nearly all BAs in the liver were in the taurine- or glycine-conjugated form in DA rats, and the proportion of conjugated liver BAs was up to 75% in WKAH rats. Similar trends were observed for the conjugation rates in bile. The most abundant secondary BA in cecal content, colorectal content, and feces was hyodeoxycholic acid in WKAH rats and omega-muricholic acid in DA rats. Analyzing detailed BA profiles, including conjugation status, in a single run is possible using UPLC/ESI-MS. This method will be useful for investigating the roles of BA metabolism under physiological and pathological conditions.  相似文献   

18.
The newly established hyphenated instrumentation of LC/DAD/SPE/NMR and LC/UV/(ESI)MS techniques have been applied for separation and structure verification of the major known constituents present in Greek Hypericum perforatum extracts. The chromatographic separation was performed on a C18 column. Acetonitrile-water was used as a mobile phase. For the on-line NMR detection, the analytes eluted from column were trapped one by one onto separate SPE cartridges, and hereafter transported into the NMR flow-cell. LC/DAD/SPE/NMR and LC/UV/MS allowed the characterization of constituents of Greek H. perforatum, mainly naphtodianthrones (hypericin, pseudohypericin, protohypericin, protopseudohypericin), phloroglucinols (hyperforin, adhyperforin), flavonoids (quercetin, quercitrin, isoquercitrin, hyperoside, astilbin, miquelianin, I3,II8-biapigenin) and phenolic acids (chlorogenic acid, 3-O-coumaroylquinic acid). Two phloroglucinols (hyperfirin and adhyperfirin) were detected for the first time, which have been previously reported to be precursors in the biosynthesis of hyperforin and adhyperforin.  相似文献   

19.
We describe a highly sensitive and specific method for the quantification of serum 7alpha-hydroxy-4-cholesten-3-one (C4), which has been used as a biomarker for bile acid biosynthesis. This method is based upon a stable isotope dilution technique by liquid chromatography-tandem mass spectrometry (LC-MS/MS). C4 was extracted from human serum (2-50 mul) by a salting-out procedure, derivatized into the picolinoyl ester (C4-7alpha-picolinate), and then purified using a disposable C(18) cartridge. The resulting picolinoyl ester derivative of C4 was quantified by LC-MS/MS using the electrospray ionization mode. The detection limit of the C4 picolinoyl ester was found to be 100 fg (signal-to-noise ratio = 10), which was approximately 1,000 times more sensitive than the detection limit of C4 with a conventional HPLC-ultraviolet method. The relative standard deviations between sample preparations and between measurements by our method were calculated to be 5.7% and 3.9%, respectively, by one-way layout analysis. The recovery experiments were performed using serum spiked with 20.0-60.0 ng/ml C4 and were validated by a polynomial equation. The results showed that the estimated concentration with 95% confidence limit was 23.1 +/- 2.8 ng/ml, which coincided completely with the observed X(0) +/- SD = 23.3 +/- 1.0 ng/ml with a mean recovery of 93.4%. This method provides highly reliable and reproducible results for the quantification of C4, especially in small volumes of blood samples.  相似文献   

20.
A novel analytical method has been developed to detect and quantify VX (O-ethyl S-(2(diisopropylamino) ethyl) (methylphosphonothioate)) in plasma using an LC-MS/MS technique. VX detection and quantification in plasma following percutaneous exposure represent a formidable challenge and it is an important part of the ongoing struggle against chemical warfare agents. Liquid-liquid extraction of VX from plasma was performed and it generated a recovery rate of approximately 65% followed by an LC-MS/MS analysis in a 100% organic phase. An Allure biphenyl column (Restek) was tested with detection limit at 0.5 pg/mL (5 μL injected). Initial application was focused on human skin grafted on nude mice as an experimental model with proper adjustments done for very small quantities of plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号