首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Protein kinase C (PKC) is a family of serine/threonine kinases involved in various signal transduction pathways. We investigated the roles of PKC in the regulation of group IIA secreted phospholipase A2 (sPLA2-IIA) expression in cytokine-stimulated rat fibroblastic 3Y1 cells. Here we show that the induction of sPLA2-IIA by proinflammatory cytokines was under the control of both classical cPKCα and atypical aPKCλ/ι pathways by using PKC inhibitors, a PKC activator, and PKC knockdowns. Treatment of 3Y1 cells with PKC selective inhibitors having broad specificity, such as chelerythrine chloride and GF109203X, blocked IL-1β/TNFα-dependent induction of sPLA2-IIA protein in a dose-dependent manner. Treatment with the PKC activator phorbol 12-myristate 13-acetate (PMA), which activates cPKC and novel nPKC isoforms, markedly attenuated the cytokine-dependent induction of sPLA2-IIA expression. In comparison, 24-h pretreatment with PMA, which down-regulates these PKC isoforms, markedly enhanced sPLA2-IIA expression. Results with short hairpin RNA (shRNA)-mediated knockdown of PKC isoforms revealed that the cytokine-induced sPLA2-IIA expression was markedly enhanced in cPKCα knockdown cells compared to those in replicate control cells. In contrast, knockdown of the aPKCλ/ι isoform reduced the cytokine-induced expression of sPLA2-IIA. These results suggest that the aPKCλ/ι pathway is required for the induction of sPLA2-IIA expression and that the cPKCα pathway acts as a negative regulator of sPLA2-IIA expression in cytokine-stimulated rat fibroblasts.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The effects of sphingosine 1-phosphate (S1P) on prostaglandin I(2) (PGI(2)) production and cyclooxygenase (COX) expression in cultured rat vascular smooth muscle cells (VSMCs) were investigated. S1P stimulated PGI(2) production in a concentration-dependent manner, which was completely suppressed by NS-398, a selective COX-2 inhibitor, as determined by radioimmunoassay. S1P stimulated COX-2 protein and mRNA expressions in a concentration- and time-dependent manner, while it had no effect on COX-1 expression. S1P(2) and S1P(3) receptors mRNA were abundantly expressed in rat VSMCs. Suramin, an antagonist of S1P(3) receptor, almost completely inhibited S1P-induced COX-2 expression. Pretreatment of VSMCs with pertussis toxin (PTX) partially, but significantly inhibited S1P-induced PGI(2) production and COX-2 expression. S1P also activated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). However, neither PD 98059, a selective inhibitor of ERK activation, nor SB 203580, a selective inhibitor of p38 MAPK, had a significant inhibitory effect on S1P-induced COX-2 expression, suggesting that the MAPK activation does not play main roles in S1P-induced COX-2 induction. S1P-induced COX-2 expression was inhibited by PP2, an inhibitor of Src-family tyrosine kinase, Ca(2+) depletion, and GF 109203X, an inhibitor of protein kinase C (PKC). These results suggest that S1P stimulates COX-2 induction in rat VSMCs through mechanisms involving Ca(2+)-dependent PKC and Src-family tyrosine kinase activation via S1P(3) receptor coupled to PTX-sensitive and -insensitive G proteins.  相似文献   

11.
We investigated the effects of high concentrations of glucose on plasminogen activator inhibitor-1 (PAI-1) gene expression in cultured rat vascular smooth muscle cells (VSMC). In response to a high glucose concentration (27.5 mM), PAI-1 mRNA increased within 2 h, peaked at 4 h, remained elevated for another 4 h, then decreased to basal levels at 24 h. On the other hand, mannose at the same concentration (22.5 mM mannose plus 5.5 mM glucose) as an osmotic control had little effect on PAI-1 mRNA expression. The expression of PAI-1 mRNA that was also increased by H(2)O(2), angiotensin II, or phorbol myristate acetate, was reversed by the MAPK kinase (MEK) inhibitor PD98059 or the specific protein kinase C (PKC) inhibitor GF109203X. High glucose appeared to activate MAPK and PKC in VSMC judging from Elk-1 and AP-1 activation, respectively. PD98059 inhibited and GF109203X prevented subsequent PAI-1 induction by glucose. These results suggest that glucose at high concentrations induces PAI-1 gene expression in VSMC at least partially via MAPK and PKC activation. This direct effect of glucose might have important implications for the increased plasma concentrations of PAI-1 and possibly atherosclerosis that are associated with diabetes.  相似文献   

12.
Atypical protein kinase C isoforms (aPKCs) transmit regulatory signals to effector proteins located in the cytoplasm, nucleus, cytoskeleton, and membranes. Mechanisms by which aPKCs encounter and control effector proteins in various microenvironments are poorly understood. By using a protein interaction screen, we discovered two novel proteins that adapt a Caenorhabditis elegans aPKC (PKC3) for specialized (localized) functions; protein kinase C adapter 1 (CKA1, 593 amino acids) and CKA1S (549 amino acids) are derived from a unique mRNA by alternative utilization of two translation initiation codons. CKA1S and CKA1 are routed to the cell periphery by exceptionally basic N-terminal regions that include classical phosphorylation site domains (PSDs). Tethering of PKC3 is mediated by a segment of CKA1 that constitutes a phosphotyrosine binding (PTB) domain. Two aromatic amino acids (Phe(175) and Phe(221)) are indispensable for creation of a PKC3-binding surface and/or stabilization of CKA1.aPKC complexes. Patterns of CKA1 gene promoter activity and CKA1/CKA1S protein localization in vivo overlap with patterns established for PKC3 expression and distribution. Transfection experiments demonstrated that CKA1/CKA1S sequesters PKC3 in intact cells. Structural information in CKA1/CKA1S enables delivery of adapters to the lateral plasma membrane surface (near tight junctions) in polarized epithelial cells. Thus, a PTB domain and PSDs collaborate in a novel fashion in CKA1/CKA1S to enable tethering and targeting of PKC3. Avid ligation of a PKC isoform is a previously unappreciated function for a PTB module.  相似文献   

13.
The protein kinase C (PKC) family, consisting of multiple isotypes, plays a major role in cellular signaling. In the nematode Caenorhabditis elegans, four pkc genes, tpa-1, pkc-1, pkc-2 and pkc-3, have been identified and investigated. Molecular analysis of tpa-1, pkc-1, and pkc-2 has shown that each gene encodes multiple PKC isoforms with different expression patterns. One of the tpa-1 isoforms, which is expressed in vulval cells, is found to play a role in nicotine-induced adaptation. The expression of pkc-1 seems to be specific to neurons, while that of pkc-2 is detected in several types of cells including neurons and muscle cells. An aPKC member encoded by pkc-3 has been shown to play an essential role in establishing the polarity of the zygote. Recent studies have revealed that the mechanism of polarity establishment mediated by aPKC is evolutionarily conserved in diverse organisms from nematodes to mammals. C. elegans provides an excellent model system for molecular dissection of the cellular signaling pathways involving PKC.  相似文献   

14.
15.
Recent studies have documented the involvement of the atypical protein kinase C (aPKC) isoforms in important cellular functions such as cell proliferation and survival. Exposure of cells to a genotoxic stimulus that induces apoptosis, such as UV irradiation, leads to a profound inhibition of the atypical PKC activity in vivo. In this study, we addressed the relationship between this phenomenon and different proteins involved in the apoptotic response. We show that (i) the inhibition of the aPKC activity precedes UV-induced apoptosis; (ii) UV-induced aPKC inhibition and apoptosis are independent of p53; (iii) Bcl-2 proteins are potent modulators of aPKC activity; and (iv) the aPKCs are located upstream of the interleukin-converting enzyme-like protease system, which is required for the induction of apoptosis by both Par-4 (a selective aPKC inhibitor) and UV irradiation. We also demonstrate here that inhibition of aPKC activity leads to a decrease in mitogen-activated protein (MAP) kinase activity and simultaneously an increase in p38 activity. Both effects are critical for the induction of apoptosis in response to Par-4 expression and UV irradiation. Collectively, these results clarify the position of the aPKCs in the UV-induced apoptotic pathway and strongly suggest that MAP kinases play a role in this signaling cascade.  相似文献   

16.
Extensive studies have identified a large number of the molecular components of cellular tight junctions (TJ), including the claudins, occludin and ZO-1/2, and also many of the physical interactions between these molecules. However, the regulatory mechanisms of TJ formation are as yet poorly understood. In HaCaT, a human epidermal keratinocyte cell line, TJ were newly formed when cells were cultured in the presence of SP600125, a JNK inhibitor. Moreover, claudin-4 was newly phosphorylated during this process. We found that claudin-4 contains a sequence which is phosphorylated by atypical PKC (aPKC). Kinase assay demonstrated that the 195th serine (serine195) of mouse claudin-4 was phosphorylated by aPKC in vitro. The 194th serine (serine194) of human claudin-4 corresponding to serine195 of mouse claudin-4 was phosphorylated in HaCaT cells when TJ were formed, and the phosphorylated claudin-4 co-localized with ZO-1 at TJ. aPKC activity was required for both the claudin-4 phosphorylation and TJ formation in HaCaT. Furthermore, overexpression of mutant claudin-4 protein S195A, which was not phosphorylated by aPKC, perturbed the TJ formation mediated by SP600125. These findings suggest that aPKC regulates TJ formation through the phosphorylation of claudin-4.  相似文献   

17.
Protein kinase C (PKC) and angiotensin II (AngII) can regulate cardiac function in pathological conditions such as in diabetes or ischemic heart disease. We have reported that expression of connective tissue growth factor (CTGF) is increased in the myocardium of diabetic mice. Now we showed that the increase in CTGF expression in cardiac tissues of streptozotocin-induced diabetic rats was reversed by captopril and islet cell transplantation. Infusion of AngII in rats increased CTGF mRNA expression by 15-fold, which was completely inhibited by co-infusion with AT1 receptor antagonist, candesartan. Similarly, incubation of cultured cardiomyocytes with AngII increased CTGF mRNA expression by 2-fold, which was blocked by candesartan and a general PKC inhibitor, GF109203X. The role of PKC isoform-dependent action was further studied using adenoviral vector-mediated gene transfer of dominant negative (dn) PKC or wild type PKC isoforms. Expression of dnPKCalpha, -epsilon, and -zeta isoforms suppressed AngII-induced CTGF expression in cardiomyocytes. In contrast, expression of dominant negative PKCdelta significantly increased AngII-induced CTGF expression, whereas expression of wild type PKCdelta inhibited this induction. This inhibitory effect was further confirmed in the myocardium of transgenic mice with cardiomyocyte-specific overexpression of PKCdelta (deltaTg mice). Thus, AngII can regulate CTGF expression in cardiomyocytes through a PKC activation-mediated pathway in an isoform-selective manner both in physiological and diabetic states and may contribute to the development of cardiac fibrosis in diabetic cardiomyopathy.  相似文献   

18.
19.
20.
Fibroblast growth factors play a critical role in cell growth, development, and differentiation and are also implicated in the formation and progression of tumors in a variety of tissues including pituitary. We have previously shown that fibroblast growth factor activation of the rat PRL promoter in GH4T2 pituitary tumor cells is mediated via MAP kinase in a Ras/Raf-1-independent manner. Herein we show using biochemical, molecular, and pharmacological approaches that PKCdelta is a critical component of the fibroblast growth factor signaling pathway. PKC inhibitors, or down-regulation of PKC, rendered the rat PRL promoter refractory to subsequent stimulation by fibroblast growth factors, implying a role for PKC in fibroblast growth factor signal transduction. FGFs caused specific translocation of PKCdelta from cytosolic to membrane fractions, consistent with enzyme activation. In contrast, other PKCs expressed in GH4T2 cells (alpha, betaI, betaII, and epsilon) did not translocate in response to fibroblast growth factors. The PKCdelta subtype-selective inhibitor, rottlerin, or expression of a dominant negative PKCdelta adenoviral construct also blocked fibroblast growth factor induction of rat PRL promoter activity, confirming a role for the novel PKCdelta isoform. PKC inhibitors selective for the conventional alpha and beta isoforms or dominant negative PKCalpha adenoviral expression constructs had no effect. Induction of the endogenous PRL gene was also blocked by adenoviral dominant negative PKCdelta expression but not by an analogous dominant negative PKCalpha construct. Finally, rottlerin significantly attenuated FGF-induced MAP kinase phosphorylation. Together, these results indicate that MAP kinase-dependent fibroblast growth factor stimulation of the rat PRL promoter in pituitary cells is mediated by PKCdelta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号