首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In eukaryotic cells, newly synthesized mRNAs acquire a poly(A) tail that plays several fundamental roles in export, translation and mRNA decay. In mammals, PABPN1 controls the processivity of polyadenylation and the length of poly(A) tails during de novo synthesis. This regulation is less well-detailed in yeast. We have recently demonstrated that Nab2p is necessary and sufficient for the regulation of polyadenylation and that the Pab1p/PAN complex may act at a later stage in mRNA metabolism. Here, we show that the presence of both Pab1p and Nab2p in reconstituted pre-mRNA 3′-end processing reactions has no stimulating nor inhibitory effect on poly(A) tail regulation. Importantly, the poly(A)-binding proteins are essential to protect the mature mRNA from being subjected to a second round of processing. We have determined which domains of Nab2p are important to control polyadenylation and found that the RGG-box work in conjunction with the two last essential CCCH-type zinc finger domains. Finally, we have tried to delineate the mechanism by which Nab2p performs its regulation function during polyadenylation: it likely forms a complex with poly(A) tails different from a simple linear deposit of proteins as it has been observed with Pab1p.  相似文献   

3.
4.
Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3'-end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)-binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)(+) RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain. Previous studies have implicated the cytoplasmic poly(A) tail-binding protein Pab1p in poly(A) tail length control during polyadenylation. Although cells are viable in the absence of NAB2 expression when PAB1 is overexpressed, Pab1p fails to resolve the nab2Delta hyperadenylation defect even when Pab1p is tagged with a nuclear localization sequence and targeted to the nucleus. These results indicate that Nab2p is essential for poly(A) tail length control in vivo, and we demonstrate that Nab2p activates polyadenylation, while inhibiting hyperadenylation, in the absence of Pab1p in vitro. We propose that Nab2p provides an important link between the termination of mRNA polyadenylation and nuclear export.  相似文献   

5.
6.
During polyadenylation, the multi-functional protein nucleophosmin (NPM1) is deposited onto all cellular mRNAs analysed to date. Premature termination of poly(A) tail synthesis in the presence of cordycepin abrogates deposition of the protein onto the mRNA, indicating natural termination of poly(A) addition is required for NPM1 binding. NPM1 appears to be a bona fide member of the complex involved in 3' end processing as it is associated with the AAUAAA-binding CPSF factor and can be co-immunoprecipitated with other polyadenylation factors. Furthermore, reduction in the levels of NPM1 results in hyperadenylation of mRNAs, consistent with alterations in poly(A) tail chain termination. Finally, knockdown of NPM1 results in retention of poly(A)(+) RNAs in the cell nucleus, indicating that NPM1 influences mRNA export. Collectively, these data suggest that NPM1 has an important role in poly(A) tail length determination and may help network 3' end processing with other aspects of nuclear mRNA maturation.  相似文献   

7.
Dewannieux M  Heidmann T 《Genomics》2005,86(3):378-381
Alu are mobile noncoding Short INterspersed Elements (SINEs) present at a million copies in the human genome. Using marked Alu sequences in an ex vivo assay, we previously showed that they are mobilized through diversion of the LINE (Long INterspersed Elements) retrotransposition machinery, with the poly(A) tail of the Alu being required for their mobility. Here we show that other homopolymeric tracts cannot functionally replace the Alu poly(A) tail, and that the Alu transposition rate varies over a two-log range depending on the poly(A) tail length. Variation is according to a sigmoid-shaped curve with a lag observed for tails shorter than 15 nt and a plateau reached for tails longer than 50 nt, consistent with the binding of a limited number of a protein component requiring multiple contacts for a productive interaction with the poly(A) stretch. This analysis indicates that most of the naturally occurring genomic Alu, owing to their pA tail length, should be poor substrates for the LINE machinery, a feature possibly "selected" for the host sake.  相似文献   

8.
9.
The regional pattern of CD52 expression in the rat epididymis was followed by Northern analyses and carbohydrate-labelling of glycoconjugates on Western blots. CD52 mRNA showed a novel aspect of regionalization, namely region-dependent length differences in its poly(A) tail. ‘Short’ CD52 mRNA molecules were present in all parts of this organ and also in the seminal vesicles. Additionally, the cauda epididymidis contained mRNA molecules with an extended poly(A) tail. Their appearance coincided with the occurance of the principal Mr ≈ 26 kDa glycopeptide in the cauda region, representing the CD52 product. CD52 expression seemed to be regulated or modulated synergistically by androgens, temperature, and (an) unknown testicular factor(s), depending on the poly(A) tail length of its mRNA. Androgens alone exerted an effect only on molecules with ‘short’ poly(A) tails. They were down-regulated in castrated animals, and restored to normal levels upon testosterone supplementation. However, ‘long’ CD52 mRNA molecules were not affected. Only if combined with the exposure of the epididymis to the elevated temperature of the abdomen, castration of animals resulted in a complete loss of the CD52 mRNA, including the ‘long’ cauda species. Loss of ‘long’ CD52 mRNA molecules was also observed when the abdominal location was combined with efferent duct ligation. This combination of treatments, however, did not affect ‘short’ CD52 mRNA levels. Loss of the ‘long’ CD52 mRNA molecules by any treatment coincided with a loss of the principal Mr ≈ 26 kDa glycopeptide from caudal protein extracts. Mol. Reprod. Dev. 48:433–441, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Regulation of poly(A) tail size of vasopressin mRNA   总被引:5,自引:0,他引:5  
  相似文献   

11.
12.
W J Ma  S Chung    H Furneaux 《Nucleic acids research》1997,25(18):3564-3569
The Elav-like proteins are specific mRNA binding proteins which are required for cellular differentiation. They contain three characteristic RNP2/RNP1-type RNA binding motifs. Previously we have shown that the first and second RNA binding domains bind to AU-rich elements in the 3'-UTR of mRNA. In this paper we show that the Elav-like proteins exhibit poly(A) binding activity. This activity is distinct from poly(A) binding activities that have been previously described. The Elav-like proteins specifically bind to long chain poly(A) tails. We have shown that the third RNA binding domain encompasses this poly(A) binding activity. Using poly(A)-Sepharose beads in a 'sandwich' assay we have shown that the Elav-like proteins can bind simultaneously to the AU-rich element and to the poly(A) tail.  相似文献   

13.
The mammalian nuclear poly(A) binding protein, PABP2, controls the length of the newly synthesized poly(A) tail on messenger RNAs. To gain a better understanding of the mechanism of length control, we have investigated the structure of the PABP2.poly(A) complex. Electron microscopy and scanning force microscopy studies reveal that PABP2, when bound to poly(A), forms both linear filaments and discrete-sized, compact, oligomeric particles. The maximum diameter of the filament is 7 nm; the maximum diameter of the particle is 21(+/-2) nm. Maximum particle size is realized when the PABP2. poly(A) complex is formed with poly(A) molecules 200-300 nt long, which corresponds to the average length of the newly synthesized poly(A) tail in vitro and in vivo. The equilibrium between filaments and particles is highly sensitive to ionic strength; filaments are favored at low ionic strength, while particles predominate at moderate to high ionic strength. Nitrocellulose filter binding and gel mobility shift assays indicate that the PABP2.poly(A) particle formed on A(300) is not significantly more stable than complexes formed with smaller species of poly(A). These results are discussed in the context of the proposed functions for PABP2.  相似文献   

14.
Synthesis of poly(A)-binding protein is regulated at the translational level. We have investigated the binding of proteins to this mRNA on the premise that the protein(s) of the mRNP complex may be involved in regulating the expression of the mRNA. We found the first 243 nucleotides of the 5' untranslated region to contain sequences essential for RNP formation. A large, single-stranded bulge structure encompassing stretches rich in adenine nucleotides and a potential stem-loop domain appear to be the primary sites for protein binding. Removal of the 243-nucleotide segment results in a drastic reduction in protein binding and a concomitant increase in translational efficiency in vitro. We suggest that proteins binding to this region, including poly(A)-binding protein itself, may be essential for regulating translation of this mRNA.  相似文献   

15.
16.
Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay. In both functions, an interaction with the m7G cap at the 5' end of the message plays an important role. PABPN1 is involved in the synthesis of poly (A) tails, increasing the processivity of poly (A) polymerase and contributing to defining the length of a newly synthesized poly (A) tail.  相似文献   

17.
The poly(A)-limiting element (PLE) is a conserved sequence that restricts the length of the poly(A) tail to <20 nt. This study compared the translation of PLE-containing short poly(A) mRNA expressed in cells with translation in vitro of mRNAs with varying length poly(A) tails. In transfected cells, PLE-containing mRNA had a <20-nt poly(A) and accumulated to a level 20% higher than a matching control without a PLE. It was translated as well as the matching control mRNA with long poly(A) and showed equivalent binding to polysomes. Translation in a HeLa cell cytoplasmic extract was used to examine the impact of the PLE in the context of varying length poly(A) tails. Here the overall translation of +PLE mRNA was less than control mRNA with the same length poly(A), and the PLE did not overcome the effect of a short poly(A) tail. Because poly(A)-binding protein (PABP) is a dominant effector of poly(A)-dependent translation we reasoned excess PABP in our extract might overwhelm PLE regulation of translation. This was confirmed by experiments where PABP was inactivated with poly(rA) or Paip2, and the effect of both treatments was reversed by addition of recombinant PABP. These data indicate that the PLE functionally substitutes for bound PABP to stimulate translation of short poly(A) mRNA.  相似文献   

18.
Translational control of maternal mRNA through regulation of poly(A) tail length is crucial during early development. The nuclear poly(A) binding protein, PABP2, was identified biochemically from its role in nuclear polyadenylation. Here, we analyze the in vivo function of PABP2 in Drosophila. PABP2 is required in vivo for polyadenylation, and Pabp2 function, including poly(A) polymerase stimulation, is essential for viability. We also demonstrate an unanticipated cytoplasmic function for PABP2 during early development. In contrast to its role in nuclear polyadenylation, cytoplasmic PABP2 acts to shorten the poly(A) tails of specific mRNAs. PABP2, together with the deadenylase CCR4, regulates the poly(A) tails of oskar and cyclin B mRNAs, both of which are also controlled by cytoplasmic polyadenylation. Both Cyclin B protein levels and embryonic development depend upon this regulation. These results identify a regulator of maternal mRNA poly(A) tail length and highlight the importance of this mode of translational control.  相似文献   

19.
The CCCH family of tandem zinc finger proteins has recently been shown to promote the turnover of certain mRNAs containing class II AU-rich elements (AREs). In the case of one member of this family, tristetraprolin (TTP), absence of the protein in knockout mice leads to stabilization of two mRNAs containing AREs of this type, those encoding tumor necrosis factor alpha (TNFalpha) and granulocyte-macrophage colony-stimulating factor. To begin to decipher the mechanism by which these zinc finger proteins stimulate the breakdown of this class of mRNAs, we co-transfected TTP and its related CCCH proteins into 293 cells with vectors encoding full-length TNFalpha, granulocyte-macrophage colony-stimulating factor, and interleukin-3 mRNAs. Co-expression of the CCCH proteins caused the rapid turnover of these ARE-containing mRNAs and also promoted the accumulation of stable breakdown intermediates that were truncated at the 3'-end of the mRNA, even further 5' than the 5'-end of the poly(A) tail. To determine whether an intact poly(A) tail was necessary for TTP to promote this type of mRNA degradation, we inserted the TNFalpha ARE into a nonpolyadenylated histone mRNA and also attached a histone 3'-end-processing sequence to the 3'-end of nonpolyadenylated interleukin-3 and TNFalpha mRNAs. In all three cases, TTP stimulated the turnover of the ARE-containing mRNAs, despite the demonstrated absence of a poly(A) tail. These studies indicate that members of this class of CCCH proteins can promote class II ARE-containing mRNA turnover even in the absence of a poly(A) tail, suggesting that the processive removal of the poly(A) tail may not be required for this type of CCCH protein-stimulated mRNA turnover.  相似文献   

20.
Mittra B  Ray DS 《Eukaryotic cell》2004,3(5):1185-1197
Crithidia fasciculata cycling sequence binding proteins (CSBP) have been shown to bind with high specificity to sequence elements present in several mRNAs that accumulate periodically during the cell cycle. The first described CSBP has subunits of 35.6 (CSBPA) and 42 kDa (CSBPB). A second distinct binding protein termed CSBP II has been purified from CSBPA null mutant cells, lacking both CSBPA and CSBPB proteins, and contains three major polypeptides with predicted molecular masses of 63, 44.5, and 33 kDa. Polypeptides of identical size were radiolabeled in UV cross-linking assays performed with purified CSBP II and 32P-labeled RNA probes containing six copies of the cycling sequence. The CSBP II binding activity was found to cycle in parallel with target mRNA levels during progression through the cell cycle. We have cloned genes encoding these three CSBP II proteins, termed RBP63, RBP45, and RBP33, and characterized their binding properties. The RBP63 protein is a member of the poly(A) binding protein family. Homologs of RBP45 and RBP33 proteins were found only among the kinetoplastids. Both RBP45 and RBP33 proteins and their homologs have a conserved carboxy-terminal half that contains a PSP1-like domain. All three CSBP II proteins show specificity for binding the wild-type cycling sequence in vitro. RBP45 and RBP33 are phosphoproteins, and RBP45 has been found to bind in vivo specifically to target mRNA containing cycling sequences. The levels of phosphorylation of both RBP45 and RBP33 were found to cycle during the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号