首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The evolution of reproductive traits, such as hybrid incompatibility (postzygotic isolation) and species recognition (prezygotic isolation), have shown their key role in speciation. Theoretical modeling has recently predicted that close linkage between genes controlling pre- and postzygotic reproductive isolation could accelerate the conditions for speciation. Postzygotic isolation could develop during the sympatric speciation process contributing to the divergence of populations. Using hybrid fitness as a measure of postzygotic reproductive isolation, we empirically studied population divergence in perch (Perca fluviatilis L.) from two genetically divergent populations within a lake.

Results

During spawning time of perch we artificially created parental offspring and F1 hybrids of the two populations and studied fertilization rate and hatching success under laboratory conditions. The combined fitness measure (product of fertilization rate and hatching success) of F1 hybrids was significantly reduced compared to offspring from within population crosses.

Conclusion

Our results suggest intrinsic genetic incompatibility between the two populations and indicate that population divergence between two populations of perch inhabiting the same lake may indeed be promoted by postzygotic isolation.  相似文献   

2.

Background

Adaptive divergence between populations in the face of strong selection on key traits can lead to morphological divergence between populations without concomitant divergence in neutral DNA. Thus, the practice of identifying genetically distinct populations based on divergence in neutral DNA may lead to a taxonomy that ignores evolutionarily important, rapidly evolving, locally-adapted populations. Providing evidence for a genetic basis of morphological divergence between rapidly evolving populations that lack divergence in selectively neutral DNA will not only inform conservation efforts but also provide insight into the mechanisms of the early processes of speciation. The coastal plain swamp sparrow, a recent colonist of tidal marsh habitat, differs from conspecific populations in a variety of phenotypic traits yet remains undifferentiated in neutral DNA.

Methods and Principal Findings

Here we use an experimental approach to demonstrate that phenotypic divergence between ecologically separated populations of swamp sparrows is the result of local adaptation despite the lack of divergence in neutral DNA. We find that morphological (bill size and plumage coloration) and life history (reproductive effort) differences observed between wild populations were maintained in laboratory raised individuals suggesting genetic divergence of fitness related traits.

Conclusions and Significance

Our results support the hypothesis that phenotypic divergence in swamps sparrows is the result of genetic differentiation, and demonstrate that adaptive traits have evolved more rapidly than neutral DNA in these ecologically divergent populations that may be in the early stages of speciation. Thus, identifying evolutionarily important populations based on divergence in selectively neutral DNA could miss an important level of biodiversity and mislead conservation efforts.  相似文献   

3.

Background

Natural populations of the teleost fish Fundulus heteroclitus tolerate a broad range of environmental conditions including temperature, salinity, hypoxia and chemical pollutants. Strikingly, populations of Fundulus inhabit and have adapted to highly polluted Superfund sites that are contaminated with persistent toxic chemicals. These natural populations provide a foundation to discover critical gene pathways that have evolved in a complex natural environment in response to environmental stressors.

Results

We used Fundulus cDNA arrays to compare metabolic gene expression patterns in the brains of individuals among nine populations: three independent, polluted Superfund populations and two genetically similar, reference populations for each Superfund population. We found that up to 17% of metabolic genes have evolved adaptive changes in gene expression in these Superfund populations. Among these genes, two (1.2%) show a conserved response among three polluted populations, suggesting common, independently evolved mechanisms for adaptation to environmental pollution in these natural populations.

Conclusion

Significant differences among individuals between polluted and reference populations, statistical analyses indicating shared adaptive changes among the Superfund populations, and lack of reduction in gene expression variation suggest that common mechanisms of adaptive resistance to anthropogenic pollutants have evolved independently in multiple Fundulus populations. Among three independent, Superfund populations, two genes have a common response indicating that high selective pressures may favor specific responses.  相似文献   

4.

Key message

The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world.

Abstract

Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.  相似文献   

5.

Key message

Twenty-seven QTLs were identified for rice seed vigor, in which 16 were novel QTLs. Fifteen elite parental combinations were designed for improving seed vigor in rice.

Abstract

Seed vigor is closely related to direct seeding in rice (Oryza sativa L.). Previous quantitative trait locus (QTL) studies for seed vigor were mainly derived from bi-parental segregating populations and no report from natural populations. In this study, association mapping for seed vigor was performed on a selected sample of 540 rice cultivars (419 from China and 121 from Vietnam). Population structure was estimated on the basis of 262 simple sequence repeat (SSR) markers. Seed vigor was evaluated by root length (RL), shoot length (SL) and shoot dry weight in 2011 and 2012. Abundant phenotypic and genetic diversities were found in the studied population. The population was divided into seven subpopulations, and the levels of linkage disequilibrium (LD) ranged from 10 to 80 cM. We identified 27 marker–trait associations involving 18 SSR markers for three traits. According to phenotypic effects for alleles of the detected QTLs, elite alleles were mined. These elite alleles could be used to design parental combinations and the expected results would be obtained by pyramiding or substituting the elite alleles per QTL (apart from possible epistatic effects). Our results demonstrate that association mapping can complement and enhance previous QTL information for marker-assisted selection and breeding by design.  相似文献   

6.

Background

In the laboratory, the Drosophila melanogaster heat shock protein Hsp90 can buffer the phenotypic effects of genetic variation. Laboratory experiments either manipulate Hsp90 activity pharmacologically, or they induce mutations with strong effects in the gene Hsp83, the single-copy fly gene encoding Hsp90. It is unknown whether observations from such laboratory experiments are relevant in the wild.

Results

We here study naturally occurring mutations in Hsp83, and their effects on fitness and phenotypic buffering in flies derived from wild populations. We examined more than 4500 flies from 42 Drosophila populations distributed world-wide for insertions or deletions of mobile DNA in or near the Hsp83 gene. The insertions we observed occur at low population frequencies, and reduce Hsp83 gene expression. In competition experiments, mutant flies performed much more poorly than wild-type flies. Mutant flies were also significantly less fecund and shorter-lived than wild-type flies, as well as less well buffered against cryptic deleterious variation, as we show through inbreeding experiments. Specifically, in Hsp83 mutant flies female fecundity dropped to much lower levels after inbreeding than in wild-type flies. At even slightly elevated temperatures, inbred mutant Hsp83 populations went extinct, whereas inbred wild-type populations persisted.

Conclusions

Our work shows that Hsp90, a regulator of the stress response and of signaling, helps buffer deleterious variation in fruit flies derived from wild population, and that its buffering role becomes even more important under heat stress.  相似文献   

7.

Background and aims

Pseudometallophytes are model organisms for adaptation and population differentiation because they persist in contrasting edaphic conditions of metalliferous and non-metalliferous habitats. We examine patterns of genetic divergence and local adaptation of Biscutella laevigata to assess historical and evolutionary processes shaping its genetic structure.

Methods

We sampled all known populations of B. laevigata in Poland and analyzed respective soil metal concentrations. For genotyping we used nine nuclear microsatellite loci. Population genetic pools were identified (Bayesian clustering) and we estimated genetic parameters and demographic divergence between metallicolous and non-metallicolous populations (ABC-approach).

Results

Populations clustered into two groups which corresponded to their edaphic origin and diverged 1,200 generations ago. We detected a significant decrease in genetic diversity and evidence for a recent bottleneck in metallicolous populations. Genetic structure was unrelated to site distribution but is rather influenced by environmental conditions (i.e. soil metal concentration).

Conclusions

The intriguing disjunctive distribution of B. laevigata in Poland results from a fragmentation of the species range during the Holocene, rather than recent long-distance-dispersal events. The genetic structure of populations, however, continues to be modified by microevolutionary processes at anthropogenic sites. These clear divergence patterns promote B. laevigata as a model species for plant adaptation to polluted environments.  相似文献   

8.

Key message

This study demonstrates for the first time that resistance to different root lesion nematodes ( P. neglectus and P. penetrans ) is controlled by a common QTL. A major resistance QTL ( Rlnnp6H ) has been mapped to chromosome 6H using two independent barley populations.

Abstract

Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42–11.19) with a large phenotypic effect (27.5–36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious.  相似文献   

9.
10.

Background

Use of plant resources and ecosystems practiced by indigenous peoples of Mesoamerica commonly involves domestication of plant populations and landscapes. Our study analyzed interactions of coexisting wild and managed populations of the pitaya Stenocereus pruinosus, a columnar cactus used for its edible fruit occurring in natural forests, silviculturally managed in milpa agroforestry systems, and agriculturally managed in homegardens of the Tehuacán Valley, Mexico. We aimed at analyzing criteria of artificial selection and their consequences on phenotypic diversity and differentiation, as well as documenting management of propagules at landscape level and their possible contribution to gene flow among populations.

Methods

Semi-structured interviews were conducted to 83 households of the region to document perception of variation, criteria of artificial selection, and patterns of moving propagules among wild and managed populations. Morphological variation of trees from nine wild, silviculturally and agriculturally managed populations was analyzed for 37 characters through univariate and multivariate statistical methods. In addition, indexes of morphological diversity (MD) per population and phenotypic differentiation (PD) among populations were calculated using character states and frequencies.

Results

People recognized 15 pitaya varieties based on their pulp color, fruit size, form, flavor, and thorniness. On average, in wild populations we recorded one variety per population, in silviculturally managed populations 1.58 ± 0.77 varieties per parcel, and in agriculturally managed populations 2.19 ± 1.12 varieties per homegarden. Farmers select in favor of sweet flavor (71% of households interviewed) and pulp color (46%) mainly red, orange and yellow. Artificial selection is practiced in homegardens and 65% of people interviewed also do it in agroforestry systems. People obtain fruit and branches from different population types and move propagules from one another. Multivariate analyses showed morphological differentiation of wild and agriculturally managed populations, mainly due to differences in reproductive characters; however, the phenotypic differentiation indexes were relatively low among all populations studied. Morphological diversity of S. pruinosus (average MD = 0.600) is higher than in other columnar cacti species previously analyzed.

Conclusions

Artificial selection in favor of high quality fruit promotes morphological variation and divergence because of the continual replacement of plant material propagated and introduction of propagules from other villages and regions. This process is counteracted by high gene flow influenced by natural factors (pollinators and seed dispersers) but also by human management (movement of propagules among populations), all of which determines relatively low phenotypic differentiation among populations. Conservation of genetic resources of S. pruinosus should be based on the traditional forms of germplasm management by local people.  相似文献   

11.
12.

Introduction

Sexually selected traits contribute substantially to evolutionary diversification, for example by promoting assortative mating. The contributing traits and their relevance for reproductive isolation differ between species. In birds, sexually selected acoustic and visual signals often undergo geographic divergence. Clines in these phenotypes may be used by both sexes in the context of sexual selection and territoriality. The ways conspecifics respond to geographic variation in phenotypes can give insights to possible behavioural barriers, but these may depend on migratory behaviour. We studied a migratory songbird, the Stonechat, and tested its responsiveness to geographic variation in male song and morphology. The traits are acquired differently, with possible implications for population divergence. Song can evolve quickly through cultural transmission, and thus may contribute more to the establishment of geographic variation than inherited morphological traits. We first quantified the diversity of song traits from different populations. We then tested the responses of free-living Stonechats of both sexes to male phenotype with playbacks and decoys, representing local and foreign stimuli derived from a range of distances from the local population.

Results

Both sexes discriminated consistently between stimuli from different populations, responding more strongly to acoustic and morphological traits of local than foreign stimuli. Time to approach increased, and time spent close to the stimuli and number of tail flips decreased consistently with geographic distance of the stimulus from the local population. Discriminatory response behaviour was more consistent for acoustic than for morphological traits. Song traits of the local population differed significantly from those of other populations.

Conclusions

Evaluating an individual’s perception of geographic variation in sexually selected traits is a crucial first step for understanding reproductive isolation mechanisms. We have demonstrated that in both sexes of Stonechats the responsiveness to acoustic and visual signals decreased with increasing geographic distance of stimulus origin. These findings confirm consistent, fine discrimination for both learned song and inherited morphological traits in these migratory birds. Maintenance or further divergence in phenotypic traits could lead to assortative mating, reproductive isolation, and potentially speciation.
  相似文献   

13.

Background

The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum.

Results

Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, inter-population differentiation, and the degree to which allele frequencies are correlated between populations.

Conclusions

The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.  相似文献   

14.

Background and aims

Noccaea caerulescens is a model plant for the understanding of trace metal accumulation and a source of cultivars for phytoextraction. The aim of this study was to investigate natural variation for trace metal accumulation, major nutrient uptake and growth parameters in 22 populations. The correlations among these traits were particularly examined to better understand the eco-physiology and the phytoextraction potential of the species.

Methods

Populations from three edaphic groups, i.e. calamine (CAL), serpentine (SERP) and non metalliferous (NMET) sites were grown in hydroponics for seven weeks at moderate trace metal exposure. Growth indicators, element contents and correlations between these variables were compared.

Results

All the phenotypic characteristics showed a wide variability among groups and populations. The SERP populations showed a smaller plant size, higher cation contents and strong correlations between all element concentrations. NMET populations did not differ in plant size from the CAL ones, but had higher Zn and Ni contents. The CAL populations showed higher Cd and Mn accumulations and lower Ca contents. The trade-off between biomass production and Cd, Ni and Zn accumulation was high in SERP populations and low in the CAL and NMET ones.

Conclusions

N. caerulescens is a genetically diverse species, showing specific features depending on the group and the population. These features may reflect the wide adaptive capacities of the species, and also reveal promising potential for phytoextraction of Cd, Ni and Zn.  相似文献   

15.

Background

The major impact of Plio-Pleistocene climatic oscillations on the current genetic structure of many species is widely recognised but their importance in driving speciation remains a matter of controversies. In addition, since most studies focused on Europe and North America, the influence of many other biogeographic barriers such as the Sahara remains poorly understood. In this paper, climate-driven diversification was investigated by using a comparative phylogeographic approach in combination with phenotypic data in two avian species groups distributed on both sides of the deserts belt of Africa and Asia. In particular, we tested whether: 1) vicariance diversification events are concomitant with past climatic events; and 2) current ecological factors (using climate and competition as proxies) contribute to phenotypic divergence between allopatric populations.

Results

Mitochondrial and nuclear sequence data indicated that the crested and Thekla lark species groups diverged in the early Pliocene and that subsequent speciation events were congruent with major late Pliocene and Pleistocene climatic events. In particular, steep increase in aridity in Africa near 2.8 and 1.7 million years ago were coincident with two north-south vicariance speciation events mediated by the Sahara. Subsequent glacial cycles of the last million years seem to have shaped patterns of genetic variation within the two widespread species (G. cristata and G. theklae). The Sahara appears to have allowed dispersal from the tropical areas during climatic optima but to have isolated populations north and south of it during more arid phases. Phenotypic variation did not correlate with the history of populations, but was strongly influenced by current ecological conditions. In particular, our results suggested that (i) desert-adapted plumage evolved at least three times and (ii) variation in body size was mainly driven by interspecific competition, but the response to competition was stronger in more arid areas.

Conclusion

Climatic fluctuations of the Plio-Pleistocene strongly impacted diversification patterns in the Galerida larks. Firstly, we found that cladogenesis coincides with major climatic changes, and the Sahara appears to have played a key role in driving speciation events. Secondly, we found that morphology and plumage were strongly determined by ecological factors (interspecific competition, climate) following vicariance.  相似文献   

16.

Key message

We developed a universally applicable planning tool for optimizing the allocation of resources for one cycle of genomic selection in a biparental population. The framework combines selection theory with constraint numerical optimization and considers genotype×? environment interactions.

Abstract

Genomic selection (GS) is increasingly implemented in plant breeding programs to increase selection gain but little is known how to optimally allocate the resources under a given budget. We investigated this problem with model calculations by combining quantitative genetic selection theory with constraint numerical optimization. We assumed one selection cycle where both the training and prediction sets comprised double haploid (DH) lines from the same biparental population. Grain yield for testcrosses of maize DH lines was used as a model trait but all parameters can be adjusted in a freely available software implementation. An extension of the expected selection accuracy given by Daetwyler et al. (2008) was developed to correctly balance between the number of environments for phenotyping the training set and its population size in the presence of genotype?×?environment interactions. Under small budget, genotyping costs mainly determine whether GS is superior over phenotypic selection. With increasing budget, flexibility in resource allocation increases greatly but selection gain leveled off quickly requiring balancing the number of populations with the budget spent for each population. The use of an index combining phenotypic and GS predicted values in the training set was especially beneficial under limited resources and large genotype × environment interactions. Once a sufficiently high selection accuracy is achieved in the prediction set, further selection gain can be achieved most efficiently by massively expanding its size. Thus, with increasing budget, reducing the costs for producing a DH line becomes increasingly crucial for successfully exploiting the benefits of GS.  相似文献   

17.
Chinook salmon, Oncorhynchus tshawytscha, from the Sacramento River, California, USA were introduced to New Zealand between 1901 and 1907, and colonized most of their present-day range within about 10 years. The New Zealand populations now vary in phenotypic traits typically used to differentiate salmon populations within their natural range: growth in freshwater and at sea, age at maturity, dates of return to fresh water and reproduction, morphology, and reproductive allocation. This paper reviews a large research program designed to determine the relative contributions of phenotypic plasticity and genetic adaptation to this variation, in an effort to understand the processes underlying the natural evolution of new populations. We found strong evidence of trait divergence between populations within at most 30 generations, particularly in freshwater growth rate, date of return, and reproductive output, with plausible adaptive bases for these differences. Importantly, we also demonstrated not only a genetic basis for post-release survival but higher survival, and hence fitness, of a population released from its established site compared to another population released from the same site. We conclude that divergence of salmon in different rivers probably resulted initially from phenotypic plasticity (e.g., habitat-specific growth rates, and effects of upriver migration on ovarian investment). Philopatry (homing to natal streams) combined with rapid evolution of distinct breeding periods to restrict gene flow, facilitating divergence in other traits. We also suggest that in addition to genetic divergence resulting from random founder effects, divergence may also arise during the very early stages of colonization when the original colonists are a non-random, pre-adapted subset of the source population. This favored founders effect immediately improves the fitness of the new population. Overall, this research reveals the complex interplay of environmental and genetic controls over behavior, physiology and life history that characterize the early stages of population differentiation, a process that has taken place repeatedly during the history of salmon populations.  相似文献   

18.

Background

Since its introduction from Taiwan to Europe around 1980, Anguillicola crassus, a natural parasite of the Japanese eel (Anguilla japonica), has acquired the European eel (Anguilla anguilla) as a novel definitive host. In this host the nematode differs noticeably in its body mass and reproductive capacity from its Asian conspecifics. We conducted a common garden experiment under a reciprocal transplant design to investigate whether differences in species-diagnostic morphological traits exist between two European and one Asian population of A. crassus and if yes whether these have a genetically fixed component.

Results

We found that worms from Germany, Poland and Taiwan differ in the size and shape of their body, oesophagus and buccal capsule. These changes are induced by both phenotypic plasticity and genetic divergence: in the European eel, nematodes from Europe as well as from Taiwan responded plastically with larger body and oesophagus dimensions compared to infections in the Japanese eel. Interestingly, the oesophagus simultaneously shows a high degree of genetically based changes being largest in the Polish strain kept in A. anguilla. In addition, the size and shape of the buccal capsule has undergone a rapid evolutionary change. Polish nematodes evolved a genetically fixed larger buccal capsule than the German and Taiwanese populations. The German strain had the smallest buccal capsule.

Conclusions

This study provides evidence for the genetic divergence of morphological traits in A. crassus which evolved over a timescale of about 30 years. Within Europe and in the European eel host these alternations affect characters used as diagnostic markers for species differentiation. Thus we provide an explanation of the discrepancy between morphological and molecular features reported for the parasitic nematode featured here, demanding general caution in morphological diagnosis of parasites discovered in new hosts.
  相似文献   

19.

Background and Aims

Several strains of rhizobacteria may be found in the rhizospheric soil, on the root surface or in association with rice plants. These bacteria are able to colonize plant root systems and promote plant growth and crop yield through a variety of mechanisms. The objectives of this study were to isolate, identify, and characterize putative plant growth-promoting rhizobacteria (PGPR) associated with rice cropped in different areas of southern Brazil.

Methods

Bacterial strains were selectively isolated based on their growth on three selective semi-solid nitrogen-free media. Bacteria were identified at the genus level by PCR-RFLP 16S rRNA gene analysis and partial sequencing methodologies. Bacterial isolates were evaluated for their ability to produce indolic compounds and siderophores and to solubilize phosphate. In vitro biological nitrogen fixation and the ability to produce 1-aminocyclopropane-1-carboxylate deaminase were evaluated for each bacterial isolate used in the inoculation experiments.

Results

In total, 336 bacterial strains were isolated representing 31 different bacterial genera. Strains belonging to the genera Agrobacterium, Burkholderia, Enterobacter, and Pseudomonas were the most prominent isolates. Siderophore and indolic compounds producers were widely found among isolates, but 101 isolates were able to solubilize phosphate. Under gnotobiotic conditions, eight isolates were able to stimulate the growth of rice plants. Five of these eight isolates were also field tested in rice plants subjected to different nitrogen fertilization rates.

Conclusions

The results showed that the condition of half-fertilization plus separate inoculation with the isolates AC32 (Herbaspirillum sp.), AG15 (Burkholderia sp.), CA21 (Pseudacidovorax sp.), and UR51 (Azospirillum sp.) achieved rice growth similar to those achieved by full-fertilization without inoculation, thus highlighting the potential of these strains for formulating new bioinoculants for rice crops.  相似文献   

20.

Background

Evolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of `reproductive assurance’ suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans.

Results

We show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance.

Conclusions

Our findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号