首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replicative senescence of human diploid fibroblasts (HDFs) is largely implemented by the cyclin-dependent kinase (CDK) inhibitors p16(INK4a) and p21(CIP1). Their accumulation results in a loss of CDK2 activity, and cells arrest with the retinoblastoma protein (pRb) in its hypophosphorylated state. It has become standard practice to bypass the effects of p16(INK4a) by overexpressing CDK4 or a variant form that is unable to bind to INK4 proteins. Although CDK4 and CDK6 and their INK4-insensitive variants can extend the life span of HDFs, they also cause a substantial increase in the levels of endogenous p16(INK4a). Here we show that CDK4 and CDK6 can extend the life span of HDFs that have inactivating mutations in both alleles of INK4a or in which INK4a levels are repressed, indicating that overexpression of CDK4/6 is not equivalent to ablation of p16(INK4a). However, catalytically inactive versions of these kinases are unable to extend the replicative life span, suggesting that the impact of ectopic CDK4/6 depends on their ability to phosphorylate as yet unidentified substrates rather than to sequester CDK inhibitors. Since p16(INK4a) deficiency, CDK4 expression, and p53 or p21(CIP1) ablation have additive effects on replicative life span, our results underscore the idea that senescence is an integrated response to diverse signals.  相似文献   

2.
3.
Cellular senescence represents a powerful tumor suppressor mechanism to prevent proliferation and invasion of malignant cells. Since tumor cells as well as primary fibroblasts lacking the lysosomal cysteine-type carboxypeptidase cathepsin X exhibit a reduced invasive capacity, we hypothesized that the underlying reason may be the induction of cellular senescence. To investigate the cellular and molecular mechanisms leading to diminished migration/invasion of cathepsin X-deficient cells, we have analyzed murine embryonic fibroblasts (MEF) derived from cathepsin X-deficient mice and neonatal human dermal fibroblasts (NHDF) transfected with siRNAs targeting cathepsin X. Remarkably, both cell types exhibited a flattened and enlarged cell body, a characteristic phenotype of senescent cells. Additional evidence for accelerated senescence was obtained by detection of the common senescence marker β-galactosidase. Further examination revealed increased expression levels of senescence-associated genes such as p16, p21, p53, and caveolin in these cells along with a reduced proliferation rate. The accelerated cellular senescence induced by cathepsin X deficiency was rescued by simultaneous expression of exogenous cathepsin X. Finally, cell cycle analysis confirmed a marked reduction of the synthesis rate and prolongation of the S-phase, while susceptibility to apoptosis of cathepsin X-deficient cells remained unchanged. In conclusion, cathepsin X deficiency leads to accelerated cellular senescence and consequently to diminished cellular proliferation and migration/invasion implying a potential role of cathepsin X in bypassing cellular senescence.  相似文献   

4.
5.
6.
7.
Id-1 delays senescence but does not immortalize keratinocytes   总被引:16,自引:0,他引:16  
Defining the molecular basis responsible for regulating the proliferative potential of keratinocytes has important implications for normal homeostasis and neoplasia of the skin. Under current culture conditions, neonatal foreskin-derived human keratinocytes possess a relatively short replicative lifespan. Recently it was reported that forced overexpression of the helix-loop-helix protein Id-1 was capable of immortalizing keratinocytes, secondary to activation of telomerase activity and suppression of p16/Rb-mediated growth arrest pathways. To investigate the relationship between Id-1, telomerase activity, telomere length, p16, Rb cell cycle regulators, and senescence, whole populations of keratinocytes were infected with a retrovirus to induce overexpression of Id-1. In these unselected cultures, enhanced Id-1 levels clearly extended the lifespan of keratinocytes, but Id-1 did not prevent the onset of replicative senescence. Under these experimental conditions, Id-1 expression did not trigger induction of telomerase activity, and there was progressive shortening of the telomeres that was accompanied by elevated p16 levels and prevalence of active Rb. The ability of Id-1 to postpone, but not prevent, senescence may be related to partial inhibition of p16 expression, as the Id-1-overexpressing cultures displayed a decreased capacity for 12-O-tetradecanoylphorbol-13-acetate-mediated p16 induction. Thus, while no immortalization was observed, Id-1 could delay the onset of replicative senescence in unselected human keratinocyte populations.  相似文献   

8.
Cellular senescence is a tumor-suppressive process characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated beta-galactosidase (SA-beta-Gal). We report here a role for CDK5 in induction of senescent cytoskeletal changes. CDK5 activation is upregulated in senescing cells. The increased activity of CDK5 further reduces GTPase Rac1 activity and Pak activation. The repression of the activity of the GTPase Rac1 by CDK5 is required for expression of the senescent phenotype. CDK5 regulation of Rac1 activity is necessary for actin polymerization accompanying senescent morphology in response to expression of pRb, activated Ras, or continuous passage. Inhibition of CDK5 attenuates SA-beta-Gal expression and blocks actin polymerization. These results point to a unique, nonneuronal role for CDK5 in regulation of Rac1 activity in senescence, illuminating the mechanisms underlying induction of senescence and the senescent shape change.  相似文献   

9.
Tissue homeostasis requires precise control of cell proliferation and arrest in response to environmental cues. In situation such as wound healing, injured cells are stimulated to divide, but as soon as confluence is reached proliferation must be blocked. Such reversible cell cycle exit occurs in G1, requires pRb family members, and is driven by p27Kip1-dependent Cdk inactivation. This implies that, while dividing, cells should simultaneously prepare the exit once mitosis is accomplished. For a long time, the decision to cycle or not was presumed to occur in G1, prior to the restriction point, beyond which the cells were bound to divide even in the absence of mitogens, before finally arresting after mitosis. However, more recent reports suggested that the commitment to cycle in response to serum occurs already in G2 phase and requires the Ras-dependent induction of cyclin D1, which promotes following G1/S transition. To test whether this hypothesis applies to arrest induced by contact inhibition, we used an in vitro wounding model where quiescent human dermal fibroblasts, stimulated to proliferate by mechanical injury, synchronously exit cell cycle after mitosis due to renewed confluence. We show that this exit is preceded by p27-dependent inhibition of cyclin A-Cdk1/2, cyclin D1 downregulation and reduced pre-mitotic pRb pocket protein phosphorylation. Over-expression of cyclin D1 but not p27 depletion reversed this phenotype and compromised confluence-driven cell cycle exit. Thus, a balance between cyclin D1 and p27 may provide sensitive responses to variations in proliferative cues operating throughout the cell cycle.  相似文献   

10.
11.
Several studies have brought about increasing evidence to support the hypothesis that miRNAs play a pivotal role in multiple processes of carcinogenesis, including cell growth, apoptosis, differentiation, and metastasis. In this study, we investigated the potential role of miR-31 in colorectal cancer (CRC) aggressiveness and its underlying mechanisms. We found that miR-31 increased in CRC cells originated from metastatic foci and human primary CRC tissues with lymph node metastases. Furthermore, the high-level expression of miR-31 was significantly associated with a more aggressive and poor prognostic phenotype of patients with CRC (p < 0.05). The stable over-expression of miR-31 in CRC cells was sufficient to promote cell proliferation, invasion, and migration in vitro. It facilitated tumor growth and metastasis in vivo too. Further studies showed that miR-31 can directly bind to the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2. Ectopic expression of SATB2 by transiently transfected with pCAG-SATB2 vector encoding the entire SATB2 coding sequence could reverse the effects of miR-31 on CRC tumorigenesis and progression. In addition, ectopic over-expression of miR-31 in CRC cells induced epithelial-mesenchymal transition (EMT). Our results illustrated that the up-regulation of miR-31 played an important role in CRC cell proliferation, invasion, and metastasis in vitro and in vivo through direct repressing SATB2, suggesting a potential application of miR-31 in prognosis prediction and therapeutic application in CRC.  相似文献   

12.
13.
14.
《Cellular signalling》2014,26(6):1347-1354
S1PR1 plays a crucial role in promoting proliferation of hepatocellular carcinoma (HCC). Over expression of S1PR1 is observed in HCC cell lines. The mechanisms underlying the aberrant expression of S1PR1 are not known well. MircroRNAs are important regulators of gene expression and disproportionate microRNAs can result in dysregulation of oncogenes in cancer cells. In this study, we found that miR-363, a potential tumor suppressor microRNA, downregulated the expression of S1PR1 and inhibited the proliferation of HCC cells. Bioinformatic analysis predicted a putative binding site of miR-363 within the 3′-UTR of S1PR1 mRNA. Luciferase reporter assay showed that miR-363 directly targeted the 3′-UTR of S1PR1 mRNA. Transfection of miR-363 mimics suppressed S1PR1 expression in HCC cells, followed by the repression of the activation of ERK and STAT3. Moreover, we found that the expression of downstream genes of ERK and STAT3, including PDGF-A, PDGF-B, MCL-1 and Bcl-xL, was suppressed after miR-363 transfection. Taken together, the present study demonstrated that miR-363 was a negative regulator of S1PR1 expression in HCC cells and inhibited cell proliferation, suggesting that the miR-363/S1PR1 pathway might be a novel target for the treatment of HCC.  相似文献   

15.
16.
17.
Senescent astrocytes accumulate with aging and contribute to brain dysfunction and diseases such as Alzheimer''s disease (AD), however, the mechanisms underlying the senescence of astrocytes during aging remain unclear. In the present study, we found that Yes‐associated Protein (YAP) was downregulated and inactivated in hippocampal astrocytes of aging mice and AD model mice, as well as in D‐galactose and paraquat‐induced senescent astrocytes, in a Hippo pathway‐dependent manner. Conditional knockout of YAP in astrocytes significantly promoted premature senescence of astrocytes, including reduction of cell proliferation, hypertrophic morphology, increase in senescence‐associated β‐galactosidase activity, and upregulation of several senescence‐associated genes such as p16, p53 and NF‐κB, and downregulation of Lamin B1. Further exploration of the underlying mechanism revealed that the expression of cyclin‐dependent kinase 6 (CDK6) was decreased in YAP knockout astrocytes in vivo and in vitro, and ectopic overexpression of CDK6 partially rescued YAP knockout‐induced senescence of astrocytes. Finally, activation of YAP signaling by XMU‐MP‐1 (an inhibitor of Hippo kinase MST1/2) partially rescued the senescence of astrocytes and improved the cognitive function of AD model mice and aging mice. Taken together, our studies identified unrecognized functions of YAP‐CDK6 pathway in preventing astrocytic senescence in vitro and in vivo, which may provide further insights and new targets for delaying brain aging and aging‐related neurodegenerative diseases such as AD.  相似文献   

18.
Although aldose reductase (AR) has been implicated in the cellular response to oxidative stress, the role of AR in ultraviolet-B (UVB)-induced cellular injury has not been investigated. Here, we show that an increased expression of AR in human keratinocytes modulates UVB-induced apoptotic cell death and senescence. Overexpression of AR in HaCaT cells significantly attenuated UVB-induced cellular damage and apoptosis, with a decreased generation of reactive oxygen species (ROS) and aldehydes. Ablation of AR with small interfering RNA or inhibition of AR activity abolished these effects. We also show that increased AR activity suppressed UVB-induced activation of the p38 and c-Jun N-terminal kinases, but did not affect the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. Similarly, UVB-induced translocation of Bax and Bcl-2 to mitochondria and cytosol, respectively, was markedly attenuated in cells overexpressing AR. Knockdown or inhibition of AR activity in primary cultured keratinocytes enhanced UVB-induced cellular senescence and increased the level of a cell-cycle regulatory protein, p53. Finally, cellular apoptosis induced by UVB radiation was significantly reduced in the epidermis of transgenic mice overexpressing human AR. These findings suggest that AR plays an important role in the cellular response to oxidative stress by sequestering ROS and reactive aldehydes generated in keratinocytes.  相似文献   

19.
20.

Background  

SATB1 is a nuclear protein that has been recently reported to be a 'genome organizer' which delineates specific epigenetic modifications at target gene loci, directly up-regulating metastasis-associated genes while down-regulating tumor-suppressor genes. In this study, the level of mRNA expression of SATB1 and SATB2 were assessed in normal and malignant breast tissue in a cohort of women with breast cancer and correlated to conventional clinico-pathological parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号