首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study an enzymatic basis for the postnatal changes in intestinal glycosylation, the activities of sialyl- and fucosyltransferases were determined in the particulate fraction of mucosal cells prepared from rat small intestine of various ages. The results show that sialyltransferase activity was present in increased levels compared to adults during the preweaning period (1-2 weeks) and subsequently declined 5-fold to adult levels after weaning, while fucosyltransferase activity was decreased compared to adults in the first 3 weeks of life, rapidly increased at 4 weeks, and reached adult levels (10-fold) by 5 weeks. The changes in both sialyl- and fucosyltransferase activities were reflected by the membranous content of glycosidic-bound sialic acid and fucose, respectively. Cortisone injection precociously induced a decreased sialyltransferase activity and an increased fucosyltransferase activity in 2-week-old suckling rats. This study indicates that the activities of sialyl- and fucosyltransferases were reciprocally related and modulated by cortisone action in the developing intestine. These enzyme changes may be responsible for the previously noted shift from sialylation to fucosylation of the intestinal mucosa during maturation.  相似文献   

2.
Six glycosyltransferases (mannosyl-, glucosyl-, N-acetyl-glucosaminyl-, galactosyl-, sialyl- and fucosyltransferases) are studied and characterized for their optimal conditions and their relations with interfering reactions (glycosyl-nucleotide pyrophosphatases, glycosidases and proteinases) in chondrocytes from osteoarthritic and normal human articular cartilage. Osteoarthritis induces increased activities for five glycosyl-transferases. The observed modifications are not explained by alterations in physico-chemical parameters of the enzymes or by intervention of glycosyl-nucleotide pyrophosphatases, glycosidases or proteolytic enzymes.  相似文献   

3.
Cystic fibrosis (CF) glycoconjugates have a glycosylation phenotype of increased fucosylation and/or decreased sialylation when compared with non-CF. A major increase in fucosyl residues linked alpha 1,3 to antennary GlcNAc was observed when surface membrane glycoproteins of CF airway epithelial cells were compared to those of non-CF airway cells. Importantly, the increase in the fucosyl residues was reversed with transfection of CF cells with wild type CFTR cDNA under conditions which brought about a functional correction of the Cl(-) channel defect in the CF cells. In contrast, examination of fucosyl residues in alpha 1,2 linkage by a specific alpha 1,2 fucosidase showed that cell surface glycoproteins of the non-CF cells had a higher percentage of fucose in alpha 1,2 linkage than the CF cells. Airway epithelial cells in primary culture had a similar reciprocal relationship of alpha 1,2- and alpha 1,3-fucosylation when CF and non-CF surface membrane glycoconjugates were compared. In striking contrast, the enzyme activity and the mRNA of alpha 1,2 fucosyltransferase did not reflect the difference in glycoconjugates observed between the CF and non-CF cells. We hypothesize that mutated CFTR may cause faulty compartmentalization in the Golgi so that the nascent glycoproteins encounter alpha 1,3FucT before either the sialyl- or alpha 1,2 fucosyltransferases. In subsequent compartments, little or no terminal glycosylation can take place since the sialyl- or alpha 1,2 fucosyltransferases are unable to utilize a substrate, which is fucosylated in alpha 1,3 position on antennary GlcNAc. This hypothesis, if proven correct, could account for the CF glycophenotype.  相似文献   

4.
The carbohydrate specificity of the two enzymes that catalyze the metabolic interconversions in the sorbitol pathway, aldose reductase and sorbitol dehydrogenase, has been examined through the use of fluoro- and deoxy-substrate analogs. Hydrogen bonding has been shown to be the primary mode of interaction by which these enzymes specifically recognize and bind their respective polyol substrates. Aldose reductase has broad substrate specificity, and all of the fluoro- and deoxysugars that were examined are substrates for this enzyme. Unexpectedly, both 3-fluoro- and 4-fluoro-D-glucose were found to be better substrates, with significantly lower K(m) and higher Kcat/K(m) values than those of D-glucose. A more discriminating pattern of substrate specificity is observed for sorbitol dehydrogenase. Neither the 2-fluoro nor the 2-deoxy analogs of D-glucitol were found to be substrates or inhibitors, suggesting that the 2-hydroxyl group of sorbitol is a hydrogen bond donor. The 4-fluoro and 4-deoxy analogs are poorer substrates than sorbitol, also implying a binding role for this hydroxyl group. In contrast, both 6-fluoro- and 6-deoxy-D-glucitol are very good substrates for sorbitol dehydrogenase, indicating that the primary hydroxyl group at this position is not involved in substrate recognition by this enzyme.  相似文献   

5.
Sialyl Lewis antigens, sialyl Lewis a and sialyl Lewis x, are utilized as tumor markers, and their increase in cancer is associated with tumor progression by enhancement of cancer cell adhesion to endothelial E-selectin. However, regulation mechanisms are not fully understood. We previously demonstrated that NEU4 is the only sialidase efficiently acting on mucins and it is down-regulated in colon cancer. To elucidate the significance of NEU4 down-regulation, we investigated sialyl Lewis antigens as endogenous substrates for the sialidase. NEU4 was found to hydrolyze the antigens in vitro and decrease cell surface levels much more effectively than other sialidases. Western blot, thin layer chromatography, and metabolic inhibition studies of desialylation products revealed NEU4 to preferentially catalyze sialyl Lewis antigens expressed on O-glycans. Cell adhesion to and motility and growth on E-selectin were significantly reduced by NEU4. E-selectin stimulation of colon cancer cells enhanced cell motility through activation of the p38/Hsp27/actin reorganization pathway, whereas NEU4 attenuated the signaling. On immunocytochemical analysis, some NEU4 molecules were localized at cell surfaces. Under hypoxia conditions whereby the antigens were increased concomitantly with several sialyl- and fucosyltransferases, NEU4 expression was markedly decreased. These results suggest that NEU4 plays an important role in control of sialyl Lewis antigen expression and its impairment in colon cancer.  相似文献   

6.
Glycosyltransferase activities of highly purified fractions of Golgi apparatus, plasma membrane and endoplasmic reticulum, all from the same homogenates, were analyzed and compared. Additionally, Golgi apparatus were unstacked and the individual cisternae separated into fractions enriched in cis, median and trans elements using the technique of preparative free-flow electrophoresis. Golgi apparatus from both liver and hepatomas were enriched in all glycosyltransferases compared to endoplasmic reticulum and plasma membranes. However, Golgi apparatus from hepatomas showed both elevated fucosyltransferase and galactosyltransferase activities but reduced sialyltransferase and dipeptidyl peptidase IV (DPP IV) activities compared to liver. Activity of N-acetylglucosaminyltransferase was approximately the same in both liver and hepatoma Golgi apparatus. With normal liver, sialyl- and galactosyltransferase activities and DPP IV showed a marked cis-to-trans gradient of activity. Fucosyltransferase was concentrated in two regions of the electrophoretic separations, one corresponding to cis cisternae and one corresponding to trans cisternae. N-Acetylglucosaminyltransferase activity was more widely distributed but the endogenous acceptor activity was predominantly cis. With hepatoma Golgi apparatus, the pattern for DPP IV was similar to that for liver but those of sialyl- and galactosyltransferases differed markedly from liver. Instead of activity increasing cis to trans, the activities for sialyl- and galactosyltransferases decreased. For fucosyltransferases, activity dependent on exogenous acceptor was medial whereas with endogenous acceptor, two activity peaks, cis and trans, still were observed. For N-acetylglucosaminyltransferase the pattern for hepatoma was similar to that for liver. The results indicate alterations in the distribution of glycosyltransferase activities within the Golgi apparatus in hepatotumorigenesis that may reflect altered cell surface glycosylation patterns.  相似文献   

7.
We synthesized a number of fluorinated analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and tested their suitability as substrates for monoamine oxidase B in vitro and their dopaminergic neurotoxicity in vivo. Two of the compounds tested, 2'-F-MPTP and 2'-CF3-MPTP, were better enzyme substrates and possessed more potent neurotoxicity for nigrostriatal dopamine neurons than MPTP, especially 2'-F-MPTP. The results of the in vivo neurotoxicity experiments correlated well with the suitability of the compounds as substrates for monoamine oxidase. These findings could serve as a basis for the use of 18F-labeled analogs of MPTP for positron emission tomography studies of nonhuman primates for better understanding of the factors underlying MPTP toxicity. Furthermore, the discovery of two MPTP analogs with enhanced selective neurotoxicity to dopaminergic neurons may be an important clue in the continuing efforts to define the chemical structure-activity factors governing MPTP neurotoxic activation mechanisms.  相似文献   

8.
The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are involved in a critical hydrogen bond donor interaction with a basic group on the enzyme which removes the developing proton during the glycosyl transfer reaction. Such groups are proposed to represent logical targets for irreversible covalent inactivation of this class of enzyme.  相似文献   

9.
Previous studies (D. S. Genghoff and E. J. Hehre, Proc. Soc. Exp. Biol. Med., 1972, 140, 1298–1301) have shown that an α-linked fluorine atom at C-1 of glucose provided sufficient activation to permit this analog to be a donor substrate for dextransucrase. In order to study the specificity at the donor substrate binding site, a series of α-1-fluorosugars have been synthesized. In kinetic experiments, it has been determined that they served as competitive inhibitors of sucrose, the natural substrate. A comparison of the Ki's provided information about the importance of specific changes in the glucose moiety with regard to binding to the enzyme. Similar kinetic studies were carried out with several β-1-fluorosugars, and the corresponding free monosaccharides. These were found to be noncompetitive inhibitors, and to bind poorly. The α-1-fluorosugars were also examined as donor substrates in reactions with known acceptors. With the exception of α-1-fluoroglucose, none of these analogs were active in this capacity.  相似文献   

10.
Highly fluorinated analogs of hydrophobic amino acids are well known to increase the stability of proteins toward thermal unfolding and chemical denaturation, but there is very little data on the structural consequences of fluorination. We have determined the structures and folding energies of three variants of a de novo designed 4‐helix bundle protein whose hydrophobic cores contain either hexafluoroleucine (hFLeu) or t‐butylalanine (tBAla). Although the buried hydrophobic surface area is the same for all three proteins, the incorporation of tBAla causes a rearrangement of the core packing, resulting in the formation of a destabilizing hydrophobic cavity at the center of the protein. In contrast, incorporation of hFLeu, causes no changes in core packing with respect to the structure of the nonfluorinated parent protein which contains only leucine in the core. These results support the idea that fluorinated residues are especially effective at stabilizing proteins because they closely mimic the shape of the natural residues they replace while increasing buried hydrophobic surface area.  相似文献   

11.
The polyamines, putrescine, spermidine, and spermine, are ubiquitous multifunctional cations essential for cellular proliferation. One specific function of spermidine in cell growth is its role as a butylamine donor for hypusine synthesis in the eukaryotic initiation factor 5A (eIF5A). Here, we report the ability of novel mono-methylated spermidine analogs (α-MeSpd, β-MeSpd, γ-MeSpd, and ω-MeSpd) to function in the hypusination of eIF5A and in supporting the growth of DFMO-treated DU145 cells. We also tested them as substrates and inhibitors for deoxyhypusine synthase (DHS) in vitro. Of these compounds, α-MeSpd, β-MeSpd, and γ-MeSpd (but not ω-MeSpd) were substrates for DHS in vitro, while they all inhibited the enzyme reaction. As racemic mixtures, only α-MeSpd and β-MeSpd supported long-term growth (9-18 days) of spermidine-depleted DU145 cells, whereas γ-MeSpd and ω-MeSpd did not. The S-enantiomer of α-MeSpd, which supported long-term growth, was a good substrate for DHS in vitro, whereas the R-isomer was not. The long-term growth of DFMO-treated cells correlated with the hypusine modification of eIF5A by intracellular methylated spermidine analogs. These results underscore the critical requirement for hypusine modification in mammalian cell proliferation and provide new insights into the specificity of the deoxyhypusine synthase reaction.  相似文献   

12.
Conformational analysis of a number of inhibitors and substrates of Escherichia coli ribosomal peptidyl transferase has indicated that they are analogs of the 3′-terminus of aminoacyl- or peptidyl-tRNA and that their primary locus of action is the acceptor site of this enzyme. The evidence available in the literature which supports the proposed scheme has been reviewed. Specific, experimentally accessible predictions of the scheme are given.  相似文献   

13.
Fluorine-containing inhibitors of matrix metalloproteinases (MMPs) can serve as lead structures for the development of 18F-labeled radioligands. These compounds might be useful as non-invasive imaging probes to characterize pathologies associated with increased MMP activity. Results with a series of fluorinated analogs of a known biphenyl sulfonamide inhibitor have shown that fluorine can be incorporated into two different positions of the molecular scaffold without significant loss of potency in the nanomolar range. Additionally, the potential of a hitherto unknown fluorinated tertiary sulfonamide as MMP inhibitor has been demonstrated.  相似文献   

14.
15.
The ability of rabbit jejunal brush borders to transport inhibitors of the imino carrier was investigated in membrane vesicles by measuring their ability to depolarize the membrane potential. Membrane potentials were monitored using a voltage-sensitive cyanine dye. Piperidine and pyrrolidine carboxylic acids, which are potent inhibitors of Na+-dependent proline transport (Ki less than 0.5 mM) depolarize the potential in a Na+-dependent, saturable manner indicating transport. On the other hand, N-methylated amino acids, which are fair inhibitors (Ki 2-10 mM), do not depolarize the membrane to any significant extent, but they competitively inhibit the L-proline transport signal. This indicates that these analogs are nontransported inhibitors of the imino carrier. The poor inhibitors niacin and pipolinic acid (Ki greater than 60 mM) depolarize the membrane about twice as much as proline and with low Kf values. This suggests separate carriers for these substrates.  相似文献   

16.
Methylanthraniloyl derivatives of ATP and CDP were used in vitro as fluorescent probes for the donor-binding and acceptor-binding sites of human UMP-CMP kinase, a nucleoside salvage pathway kinase. Like all NMP kinases, UMP-CMP kinase binds the phosphodonor, usually ATP, and the NMP at different binding sites. The reaction results from an in-line phosphotransfer from the donor to the acceptor. The probe for the donor site was displaced by the bisubstrate analogs of the Ap5X series (where X = U, dT, A, G), indicating the broad specificity of the acceptor site. Both CMP and dCMP were competitors for the acceptor site probe. To find antimetabolites for antivirus and anticancer therapies, we have developed a method of screening acyclic phosphonate analogs that is based on the affinity of the acceptor-binding site of the human UMP-CMP kinase. Several uracil vinylphosphonate derivatives had affinities for human UMP-CMP kinase similar to those of dUMP and dCMP and better than that of cidofovir, an acyclic nucleoside phosphonate with a broad spectrum of antiviral activities. The uracil derivatives were inhibitors rather than substrates of human UMP-CMP kinase. Also, the 5-halogen-substituted analogs inhibited the human TMP kinase less efficiently. The broad specificity of the enzyme acceptor-binding site is in agreement with a large substrate-binding pocket, as shown by the 2.1 A crystal structure.  相似文献   

17.
Thioalkyl containing K vitamin analogs have been shown to be potent inhibitors of hepatoma cell growth and antagonizers of protein tyrosine phosphatase activity. We now show that they inhibit the activity of specific protein tyrosine phosphatases (PTP) in cell-free conditions in vitro, particularly the dual specificity phosphatase Cdc25A. Using primary cultures of adult rat hepatocytes that are in G0/G1 phase until stimulated into DNA synthesis by epidermal growth factor, we found that 2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone or Compound 5 (Cpd 5) inhibited hepatocyte DNA synthesis and PTP activity in cell culture and in vivo after a two-thirds partial hepatectomy. We found a selective inhibition of Cdc25A activity in vitro, using both synthetic substrates and authentic cellular substrate, immunoprecipitated phospho-Cdk4. Intact Cpd 5-treated cells had decreased cellular Cdc25A activity and increased tyrosine phosphorylation of Cdk4, resulting in decreased phosphorylation of retinoblastoma (Rb). Loss of Cdk4 activity was confirmed using Cdk4 immunoprecipitates from either Cpd 5-treated or untreated cells and measuring its kinase activity using GST-Rb as target. We found a similar order of activity for inhibition of growth and Cdc25A activity using several thiol-containing analogs. Cdc25A inhibitors may thus be useful for defining biochemical pathways involving protein tyrosine phosphorylation that mediate cell growth inhibition.  相似文献   

18.
Two cloned fucosyltransferases, Fuc-t III and Fuc-t VI, are probed on a preparative scale with non-natural donor-substrates, in which the guanosine of the natural donor guanosine-diphosphate-fucose is replaced by other purines. Surprisingly, the novel purine-diphosphate-fucoses (PDP-Fuc) are recognized by both enzymes as donor-substrates.  相似文献   

19.
The recent data on the interaction of model substrates and substrate-like analogs with acceptor and donor sites of 70S and 80S ribosomes are considered in terms of peptidyl transferase center models suggested earlier.  相似文献   

20.
Methylglyoxal synthetase, which catalyzes the conversion of dihydroxyacetone phosphate to methylglyoxal and inorganic phosphate, has been isolated and crystalized in good yields from Proteus vulgaris. The enzyme was shown to be homogeneous by a variety of criteria and was found to be a dimer (Mr = 135,000; s20,w = 7.2 S) composed of two apparently identical catalytic and physical properties and their interconvertible nature suggest that they do not represent true isozymes. The enzyme is specific for dihydroxyacetone phosphate and does not form methylglyoxal from glyceraldehyde 3-phophate, glyceraldehyde, or dihydroxyacetone. Nonphosphorylated analogs are neither substrates nor competive inhibitors, but a variety of phosphorylated analogs are competitive with respect to dihydroxyacetone phosphate. The enzyme is inhibited by inorganic orthophosphate in a complex manner which is overcome by dihydroxyacetone phosphate in a signoidal manner  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号