首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homooligomeric LonA proteases are the key components of the protein quality control system in bacteria and eukaryotes. Domain organization of the common pool of LonA proteases is determined by the comparative analysis of primary and secondary structures of a number of bacterial and eukaryotic enzymes. The similarity of individual enzyme domains was estimated, domain-domain linker areas were revealed, and regions that are capable of including intercalated peptide fragments were identified. LonA proteases were shown to be unique AAA+ proteins, because in addition to the classic AAA+ module they contain a part of another AAA+ module, namely the α-helical domain including a coiled-coil region, which is similar to the α-helical domain of the AAA+-1 module of the chaperone-disagregases ClpB/Hsp104.  相似文献   

2.
A general paradigm for energy-dependent proteases is emerging: ATP may be used to unfold the substrate and translocate it through a narrow channel within the enzyme into a central proteolytic chamber. Different members of the family present intriguing elaborations on this model.  相似文献   

3.
Upon infection of a bacterial cell, the temperate bacteriophage lambda executes a regulated temporal program with two possible outcomes: (1) Cell lysis and virion production or (2) establishment of a dormant state, lysogeny, in which the phage genome (prophage) is integrated into the host chromosome. The prophage is replicated passively as part of the host chromosome until it is induced to resume the lytic cycle. In this review, we summarize the evidence that implicates every known ATP-dependent protease in the regulation of specific steps in the phage life cycle. The proteolysis of specific regulatory proteins appears to fine-tune phage gene expression. The bacteriophage utilizes multiple proteases to irreversibly inactivate specific regulators resulting in a temporally regulated program of gene expression. Evolutionary forces may have favored the utilization of overlapping protease specificities for differential proteolysis of phage regulators according to different phage life styles.  相似文献   

4.
Distinctive types of ATP-dependent Clp proteases in cyanobacteria   总被引:2,自引:0,他引:2  
Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis and are thought to be ancestors to plant chloroplasts. Like chloroplasts, cyanobacteria possess a diverse array of proteolytic enzymes, with one of the most prominent being the ATP-dependent Ser-type Clp protease. The model Clp protease in Escherichia coli consists of a single ClpP proteolytic core flanked on one or both ends by a HSP100 chaperone partner. In comparison, cyanobacteria have multiple ClpP paralogs plus a ClpP variant (ClpR), which lacks the catalytic triad typical of Ser-type proteases. In this study, we reveal that two distinct soluble Clp proteases exist in the unicellular cyanobacterium Synechococcus elongatus. Each protease consists of a unique proteolytic core comprised of two separate Clp subunits, one with ClpP1 and ClpP2, the other with ClpP3 and ClpR. Each core also associates with a particular HSP100 chaperone partner, ClpC in the case of the ClpP3/R core, and ClpX for the ClpP1/P2 core. The two adaptor proteins, ClpS1 and ClpS2 also interact with the ClpC chaperone protein, likely increasing the range of protein substrates targeted by the Clp protease in cyanobacteria. We also reveal the possible existence of a third Clp protease in Synechococcus, one which associates with the internal membrane network. Altogether, we show that presence of several distinctive Clp proteases in cyanobacteria, a feature which contrasts from that in most other organisms.  相似文献   

5.
The review characterizes the main enzymatic systems of selective proteolysis responsible for maintenance of intracellular proteome in prokaryotes, eukaryotes and archaea. The features of proteolytic components of the ATP-dependent proteases as well as similarity and diversity of their regulatory components belonging to AAA+ ATPases are discussed.  相似文献   

6.
ATP-dependent proteases from three families have been identified experimentally in Arabidopsis mitochondria: four FtsH proteases (AtFtsH3, AtFtsH4, AtFtsH10, and AtFtsH11), two Lon proteases (AtLon1 and AtLon4), and one Clp protease (AtClpP2 with regulatory subunit AtClpX). In this review we discuss their submitochondrial localization, expression profiles and proposed functions, with special emphasis on their impact on plant growth and development. The best characterized plant mitochondrial ATP-dependent proteases are AtLon1 and AtFtsH4. It has been proposed that AtLon1 is necessary for proper mitochondrial biogenesis during seedling establishment, whereas AtFtsH4 is involved in maintaining mitochondrial homeostasis late in rosette development under short-day photoperiod.  相似文献   

7.
8.
ATP-powered AAA+ proteases degrade specific proteins in intracellular environments occupied by thousands of different proteins. These proteases operate as powerful molecular machines that unfold stable native proteins before degradation. Understanding how these enzymes choose the "right" protein substrates at the "right" time is key to understanding their biological function. Recently, proteomic approaches have identified numerous substrates for some bacterial enzymes and the sequence motifs responsible for recognition. Advances have also been made in elucidating the mechanism and impact of adaptor proteins in regulating substrate choice. Finally, recent biochemical dissection of the ATPase cycle and its coupling to protein unfolding has revealed fundamental operating principles of this important, ubiquitous family of molecular machines.  相似文献   

9.
Formation and degradation of SsrA-tagged proteins enable ribosome recycling and elimination of defective products of incomplete translation. We produced an antibody against the SsrA peptide and used it to measure the amounts of SsrA-tagged proteins in Escherichia coli cells without interfering with tagging or altering the context of the tag added at the ends of nascent polypeptides. SsrA-tagged proteins were present in very small amounts unless a component of the ClpXP protease was missing. From the levels of tagged proteins in cells in which degradation is essentially blocked, we calculate that > or =1 in 200 translation products receives an SsrA tag. ClpXP is responsible for > or =90% of the degradation of SsrA-tagged proteins. The degradation rate in wild type cells is > or =1.4 min(-1) and decreases to approximately 0.10 min(-1) in a clpX mutant. The rate of degradation by ClpXP is decreased approximately 3-fold in mutants lacking the adaptor SspB, whereas degradation by ClpAP is increased 3-5-fold. However, ClpAP degrades SsrA-tagged proteins slowly even in the absence of SspB, possibly because of interference from ClpA-specific substrates. Lon protease degrades SsrA-tagged proteins at a rate of approximately 0.05 min(-1) in the presence or absence of SspB. We conclude that ClpXP, together with SspB, is uniquely adapted for degradation of SsrA-tagged proteins and is responsible for the major part of their degradation in vivo.  相似文献   

10.
ATP-Dependent Lon-proteases are components of the protein quality control system, which maintains cellular proteome. The Lon family consists of two subfamilies A and B, differing in subunit architecture and intracellular location. We propose here a reinterpretation of the domain organization of the non-catalytic N-terminal region of LonA proteases. Using Escherichia coli LonA protease (EcLon) as an example, it has been shown that a fragment (αN domain) located between the N-terminal domain and the AAA+ module is similar to the α1 domain of the first AAA+ module of chaperone-disaggregase ClpB. A coiled-coil (CC) region included in the αN domain of LonA is similar to the M domain of ClpB chaperones, which is inserted into the α1 domain. This region is suggested to adopt the structure similar to the propeller-like (PL) domain. The typical architecture of the N-terminal region of LonA proteases is postulated to be characterized by the obligatory presence of a PL domain, included in the αN domain, but may vary in the length and topology of the preceding N-terminal domain, which can have in some cases a more complex structure than in EcLon.  相似文献   

11.
12.
13.
ATP-dependent Lon proteases are multi-domain enzymes found in all living organisms. All Lon proteases contain an ATPase domain belonging to the AAA(+) superfamily of molecular machines and a proteolytic domain with a serine-lysine catalytic dyad. Lon proteases can be divided into two subfamilies, LonA and LonB, exemplified by the Escherichia coli and Archaeoglobus fulgidus paralogs, respectively. The LonA subfamily is defined by the presence of a large N-terminal domain, whereas the LonB subfamily has no such domain, but has a membrane-spanning domain that anchors the protein to the cytoplasmic side of the membrane. The two subfamilies also differ in their consensus sequences. Recent crystal structures for several individual domains and sub-fragments of Lon proteases have begun to illuminate similarities and differences in structure-function relationships between the two subfamilies. Differences in orientation of the active site residues in several isolated Lon protease domains point to possible roles for the AAA(+) domains and/or substrates in positioning the catalytic residues within the active site. Structures of the proteolytic domains have also indicated a possible hexameric arrangement of subunits in the native state of bacterial Lon proteases. The structure of a large segment of the N-terminal domain has revealed a folding motif present in other protein families of unknown function and should lead to new insights regarding ways in which Lon interacts with substrates or other cellular factors. These first glimpses of the structure of Lon are heralding an exciting new era of research on this ancient family of proteases.  相似文献   

14.
The main contribution of the presented work was to introduce the use of proteases modified with the soluble polymer polyethylene glycol (PEG) in the bio-finishing process of wool fibres, to target enzyme action to the outer parts of wool fibres, i.e. to avoid the diffusion and consequent destroying of the inner parts of the wool fibre structure, in the case of native proteases using.

Different proteolytic enzymes from Bacillus lentus and Bacillus subtilis in native and PEG-modified forms were investigated and their influence on the modification of wool fibres morphology surface, chemical structure, as well as the hydrolysis of wool proteins, the physico-mechanical properties, and the sorption properties of 1:2 metal complex dye during dyeing were studied. SEM images of wool fibres confirmed smoother and cleaner fibre surfaces without fibre damages using PEG-modified proteases. Modified enzyme products have a benefit effect on the wool fibres felting behaviours (14%) in the case when PEG-modified B. lentus is used, without markedly fibre damage expressed by tensile strength and weight loss of the fibre. Meanwhile the dye exhaustion showed slower but comparable level of dye uptake at the end of the dyeing.  相似文献   


15.
One of the most important questions in ecology is the relative importance of local conditions (niche processes) and dispersal ability (neutral processes) in driving metacommunity structure. Although many studies have been conducted in recent years, there is still much debate. We evaluated the processes (niche and neutral) responsible for variation in anuran composition in 28 lentic water bodies in southeastern Brazil. Because anurans depend heavily on environmental conditions, we hypothesized that environmental variables (niche processes) are the most important drivers of community composition. Additionally, as anurans have limited dispersal abilities, and the study region presents harsh conditions (high forest fragmentation, low rainfall and long dry season), we expected a lower, but significant, spatial signature in metacommunity structure, due to neutral dynamics. We used a partial redundancy analysis with variation partitioning to evaluate the relative influence of environmental and spatial variables as drivers of metacommunity structure. Additionally, we used a recently developed spatial autocorrelation analysis to test if neutral dynamics can be attributed to the pure spatial component. This analysis is based on predictions that species abundances are independent but similarly spatially structured, with correlograms similar in shape. Therefore, under neutral dynamics there is no expectation of a correlation between the pairwise distance of spatial correlograms and the pairwise correlation of species abundances predicted by the pure spatial component. We found that the environmental component explained 21.5%, the spatial component 10.2%, and the shared component 6.4% of the metacommunity structure. We found no correlation between correlograms and correlation of abundances predicted by the pure spatial component (Mantel test = ?0.109, P = 0.961). In our study, niche‐based processes are the dominant process that explained community composition. However, neutral processes are important because spatial variation can be attributed to pure neutral dynamics rather than to missing spatially structured environmental factors.  相似文献   

16.
17.
Summary Two proteases from Aspergillus niger C post-culture medium were isolated by fractionation on a DEAE-sepharose column and ultrafiltration. The four fractions of glucoamylase activity (GA1, GA2, GA3 and GA4) present in the medium showed different susceptibility to the influence of proteases. The effects of proteases on the different glucoamylase fractions during the growth of the fungus are demonstrated. The activity was found to decrease at the beginning of the culture, but by its end there was a stimulation of GA4 glucoamylase. After treating GA2 and GA3 with protease II, a new additional fraction of glucoamylase was detected.  相似文献   

18.
In general, the salinity of the ocean is close to 3.5% and marine vibrios possess the respiratory chain-linked Na+ pump. The influence of sodium chloride and the proton conductor carbonylcyanide m-chlorophenylhydrazone (CCCP) on the production of extracellular proteases in a marine Vibrio strain was examined. At the concentration of 0.5 M, sodium chloride minimally inhibited the activity of extracellular proteases by approximately 16%, whereas at the same concentration, the producton of extracellular proteases was severely inhibited. On the other hand, the production of extracellular proteases was completely inhibited by the addition of 2 microM CCCP at pH 8.5, where the respiratory chain-linked Na+ pump functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号