共查询到20条相似文献,搜索用时 15 毫秒
1.
Besir H Zeth K Bracher A Heider U Ishibashi M Tokunaga M Oesterhelt D 《FEBS letters》2005,579(29):6595-6600
Nucleoside diphosphate kinase from the halophilic archaeon Halobacterium salinarum was crystallized in a free state and a substrate-bound form with CDP. The structures were solved to a resolution of 2.35 and 2.2A, respectively. Crystals with the apo-form were obtained with His6-tagged enzyme, whereas the untagged form was used for co-crystallization with the nucleotide. Crosslinking under different salt and pH conditions revealed a stronger oligomerization tendency for the tagged protein at low and high salt concentrations. The influence of the His6-tag on the halophilic nature of the enzyme is discussed on the basis of the observed structural properties. 相似文献
2.
Y Yonezawa H Tokunaga M Ishibashi M Tokunaga 《Bioscience, biotechnology, and biochemistry》2001,65(10):2343-2346
Nucleoside diphosphate kinase was purified to apparent homogeneity from naturally isolated moderately halophilic eubacteria by ATP-agarose and phenyl-5PW column chromatographies. The molecular mass of this enzyme was 15 kDa by time-of-flight mass-spectrometry. This protein showed anomalous mobility on SDS-PAGE which is typical of a halophilic protein. It was stable and active over a wide range of salt concentrations, from 0 to 4.0 M NaCl. 相似文献
3.
Ishibashi M Sakashita K Tokunaga H Arakawa T Tokunaga M 《Journal of Protein Chemistry》2003,22(4):345-351
The folding and activity of halophilic enzymes are believed to require the presence of salts at high concentrations. When the inactivated nucleoside diphosphate kinase (NDK) from extremely halophilic archaea was incubated with low salt media, no activity was regained over the course of 8 days. When it was incubated with 2 M NaCl or 3 M KCl, however, it gradually regained activity. To our surprise, trimethylamine N-oxide (TMAO) also was able to induce activation at 4.0 M. The enzyme activity and secondary structure of refolded NDK in 4 M TMAO were comparable with those of the native NDK or the refolded NDK in 3.8 M NaCl. TMAO is not an electrolyte, meaning that the presence of concentrated salts is not an absolute requirement, and that charge shielding or ion binding is not a sole factor for the folding and activation of NDK. Although both NaCl and TMAO are effective in refolding NDK, the mechanism of their actions appears to be different: the effect of protein concentration and pH on refolding is qualitatively different between these two, and at pH 8.0 NDK could be refolded in the presence of 4 M TMAO only when low concentrations of NaCl are included. 相似文献
4.
Matsujiro Ishibashi Tomoe Hayashi Chiho Yoshida Masao Tokunaga 《Extremophiles : life under extreme conditions》2013,17(4):585-591
Nucleoside diphosphate kinase (HsNDK) from an extremely halophilic archaea, Halobacterium salinarum, is composed of a homo hexamer, assembled as a trimer of basic dimeric units. It requires >2 M NaCl for refolding, although it does not require NaCl for stability or enzymatic activity below 30 °C. A HisN111L mutant with an N-terminal extension sequence containing hexa-His tag, in which Asn111 was replaced with Leu, was designed to be less stable between basic dimeric units. This mutant can lose between 6 and 12 hydrogen bonds between basic dimeric units in the hexamer structure. The HisN111L mutant had enhanced salt requirements for enzymatic activity and refolding even though the secondary structure of the HisN111L mutant was confirmed to be similar to the control, HisNDK, in low and high salt solutions using circular dichroism. We reported previously that G114R and D148C mutants, which had enhanced interactions between basic dimeric units, showed facilitated refolding and stabilization in low salt solution. The results of this study help to elucidate the process for engineering industrial enzymes by controlling subunit–subunit interactions through mutations. 相似文献
5.
Regulation of dynamin by nucleoside diphosphate kinase 总被引:7,自引:0,他引:7
Nucleoside diphosphate (NDP) kinase is required for multiple cellular functions, including cell growth, motility, and differentiation, and its loss is associated with pathologies including tumor metastasis. A recent study has revealed a previously unknown function for NDP kinase as positive regulator of dynamin, a GTPase essential for endocytosis. In this review we describe the evidence that NDP kinase function is essential for endocytosis and also elaborate on a mechanism for NDP kinase regulation of dynamin. Recently documented interactions between endocytosis and cell signaling have revealed new insights into potential mechanisms of cancer. In this context, we discuss the possible relevance of NDP kinase and dynamin interaction for tumor suppression. 相似文献
6.
B Schneider Y Xu O Sellam R Sarfati J Janin M Véron D Deville-Bonne 《Nucleosides & nucleotides》1999,18(4-5):829-830
The reaction of NDP kinase with antiviral nucleoside triphosphates used in antiviral therapies was studied at the presteady state by fluorescence stopped-flow and compared with the steady-state parameters. The affinity of the analogs was determined by fluorescence titration of a mutated enzyme with an inserted Trp in the binding site. The lack of the 3' hydroxyl in analogs is shown to decrease the kcat more than the KD. 相似文献
7.
A halophilic nucleoside diphosphate kinase from a moderate halophile, Halomonas sp. 593 (593NDK), was found to be resistant to heat treatment, as indicated by the high level of activity recovery after heating at high temperatures. This is due to reversibility of thermal unfolding, not the high melting temperature, of the protein. The highly homologous NDK from non-halophilic organism, Pseudomonas aeruginosa, showed instability against heat treatment. Chimeric molecules consisting of each half of these two NDKs were constructed and characterized for their heat stability. The results showed that the N-terminal half of 593NDK contributes to the heat stability of the proteins. We discuss the possible reason for the observed difference in resistance to heat treatment between the 593NDK and PaNDK and between two chimeric proteins. 相似文献
8.
Residue 134 determines the dimer-tetramer assembly of nucleoside diphosphate kinase from moderately halophilic bacteria 总被引:1,自引:0,他引:1
Tokunaga H Ishibashi M Arisaka F Arai S Kuroki R Arakawa T Tokunaga M 《FEBS letters》2008,582(7):1049-1054
Halomonas nucleoside diphosphate kinase (HaNDK) forms a dimeric assembly and Pseudomonas NDK (PaNDK) forms a tetrameric assembly. The mutation of Glu134 to Ala in HaNDK resulted in the conversion of the native dimeric structure to the tetramer assembly. Conversely, the mutation of Ala134 to Glu in PaNDK lead to the conversion from the tetramer to the dimer assembly, indicating that a single amino acid substitution at position 134 results in an alteration of the oligomeric structure of NDK. By modeling the structure of HaNDK and PaNDK based on the crystal structure of Myxococcus NDK, we showed that Glu134 exerts sufficient repulsive forces to disrupt the dimer-dimer interaction and prevent the formation of the tetramer. 相似文献
9.
The microtubule-associated nucleoside diphosphate kinase 总被引:7,自引:0,他引:7
Microtubule protein prepared by cycles of assembly-disassembly contains a nucleoside diphosphate kinase (NDP kinase) activity. We have isolated the NDP kinase responsible for this activity from twice-polymerized bovine brain microtubule protein by a five-step chromatographic procedure. The molecular weight of this enzyme was 103,000 +/- 7,000 daltons as determined by sedimentation equilibrium experiments performed with a Beckman Airfuge. A doublet of subunit bands with molecular masses of about 18,000 daltons was detected by silver staining after gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this preparation. We conclude that the enzyme is a hexamer, although we cannot identify the mix of subunits. We were able to isolate only nanogram quantities of this enzyme, too little for extensive studies, so we isolated the enzyme directly from bovine brain without a preliminary microtubule protein isolation. The whole-brain NDP kinase was isolated by the same chromatographic steps as the enzyme from microtubule protein preparations. Both enzymes had a doublet of subunits at the same molecular weights and both were the same isozyme, chromatofocusing at a pH of 8.0. Both enzymes had similar kinetic properties and similar thermal inactivation profiles. These similar properties of the two enzymes suggest that they are identical. Both subunits of NDP kinase could be reversibly phosphorylated by ATP. Phosphorylation of the native enzyme created multiple, more acidic forms that retained activity. The isolation of this NDP kinase, which can copurify with microtubule protein through cycles of assembly-disassembly, will facilitate future studies on the role of this enzyme in the mechanism and regulation of microtubule assembly. 相似文献
10.
Nagayoshi C Tokunaga H Hayashi A Harazono H Hamasaki K Ando A Tokunaga M 《Protein and peptide letters》2006,13(6):611-615
Enzymes from extremely halophilic archaea require high concentration of salts for their proper folding and consequently are expressed as an unfolded and inactive form in Escherichia coli. Moderate halophile, which accumulates protein stabilizers, i.e., compatible solutes, is an attractive host cell for the recombinant production of heterologous proteins, since such protein stabilizers may help folding of expressed proteins. Here, we succeeded in efficient expression and purification to homogeneity of recombinant haloarchaeal nucleoside diphosphate kinase (HsNDK) in moderate halophile using newly isolated strong porin promoter. 相似文献
11.
Ishibashi M Ida K Tatsuda S Arakawa T Tokunaga M 《International journal of biological macromolecules》2011,49(4):778-783
We have previously reported that amino-terminal extension sequence containing hexa-His facilitated refolding and assembly of hexameric nucleoside diphosphate kinase from extremely halophilic archaeon Halobacterium salinarum (NDK). In this study, we made various mutations in both the tag sequence and within NDK molecule. SerNDK, in which hexa-His was replaced with hexa-Ser, showed no facilitated folding. In addition, HisD58GD63G, in which both Asp58 and Asp63 in NDK were replaced with Gly, also showed no refolding enhancement. These results suggest that hexa-His in His-tag interact cooperatively with either Asp58 or Asp63 or both. Furthermore, G114D mutant, which formed a dimer in low salt solution, was strongly stabilized by His-tag to form a stable hexamer. 相似文献
12.
Yonezawa Y Izutsu K Tokunaga H Maeda H Arakawa T Tokunaga M 《FEMS microbiology letters》2007,268(1):52-58
Light scattering and chemical cross-linking analyses of nucleoside diphosphate kinase (NDK) from moderate halophile, Halomonas sp. 593 (HaNDK), unambiguously demonstrated that this enzyme formed a dimeric structure, in contrast to the Pseudomonas NDK (PaNDK), a nonhalophilic counterpart, and other NDKs from Gram-negative bacteria, which all formed a tetrameric structure. Comparison of HaNDK and PaNDK showed that the HaNDK was less thermally stable than the PaNDK: the optimum temperature of PaNDK enzyme activity was 20 degrees C higher than that of HaNDK. However, the HaNDK readily refolded and reassembled back to the active dimeric structure, upon heat denaturation at 0.2 M NaCl, as soon as the temperature was lowered. On the contrary, the thermally more stable PaNDK was irreversibly denatured at its melting temperature. 相似文献
13.
X-ray structure of nucleoside diphosphate kinase. 总被引:8,自引:0,他引:8
C Dumas I Lascu S Morra P Glaser R Fourme V Wallet M L Lacombe M Vron J Janin 《The EMBO journal》1992,11(9):3203-3208
The X-ray structure of a point mutant of nucleoside diphosphate kinase (NDP kinase) from Dictyostelium discoideum has been determined to 2.2 A resolution. The enzyme is a hexamer made of identical subunits with a novel mononucleotide binding fold. Each subunit contains an alpha/beta domain with a four stranded, antiparallel beta-sheet. The topology is different from adenylate kinase, but identical to the allosteric domain of Escherichia coli ATCase regulatory subunits, which bind mononucleotides at an equivalent position. Dimer contacts between NDP kinase subunits within the hexamer are similar to those in ATCase. Trimer contacts involve a large loop of polypeptide chain that bears the site of the Pro----Ser substitution in Killer of prune (K-pn) mutants of the highly homologous Drosophila enzyme. Properties of Drosophila NDP kinase, the product of the awd developmental gene, and of the human enzyme, the product of the nm23 genes in tumorigenesis, are discussed in view of the three-dimensional structure and of possible interactions of NDP kinase with other nucleotide binding proteins. 相似文献
14.
Kinetic studies of yeast nucleoside diphosphate kinase 总被引:7,自引:0,他引:7
15.
Stenberg LM Stenflo J Holmgren P Brown MA 《Biochemical and biophysical research communications》2002,295(3):689-694
Nucleoside diphosphate kinase (NDPK) was purified from Drosophila melanogaster by a combination of anion-exchange, hydroxyapatite, and reversed-phase chromatography. The identity of the purified enzyme was confirmed by sequencing internal peptides (the N-terminus appeared to be blocked). Post-translational modifications were investigated by using protein chemical and mass spectrometric methods. Analysis by nanoelectrospray ionization-mass spectrometry revealed that the mass of the enzyme was considerably smaller than that predicted from its amino acid sequence. Although its open-reading frame predicts a 153-residue polypeptide, the mature enzyme was found to comprise 152 amino acids, being modified by proteolytic removal of the initiator Met and N-acetylation of Ala2. This explains why the observed pI of the Drosophila enzyme is more acidic than that predicted from its amino acid sequence. No additional post-translational modifications such as glycosylation or O-phosphorylation, which have been identified on homologous NDPKs from other organisms, were detected on the Drosophila enzyme. 相似文献
16.
Secondary and quaternary structural transition of the halophilic archaeon nucleoside diphosphate kinase under high- and low-salt conditions 总被引:1,自引:0,他引:1
Ishibashi M Arakawa T Philo JS Sakashita K Yonezawa Y Tokunaga H Tokunaga M 《FEMS microbiology letters》2002,216(2):235-241
Most halophilic enzymes from extremely halophilic archaea are denatured immediately after transfer from high-salt to low-salt medium. However, nucleoside diphosphate kinase (HsNDK) from the extremely halophilic archaeon Halobacterium salinarum seems to be exceptional, since the enzyme exhibited catalytic activity even under the low-salt condition. Here we show the mechanism how HsNDK is active under both high- and low-salt conditions that the HsNDK hexamer in high-salt medium dissociates into a dimer in the low-salt medium without denaturation. The observed change of the subunit structure was accompanied by a large decrease of alpha-helical content and lowered thermal sensitivity, yet keeping the conformations. This novel hexamer to dimer conversion under high- and low-salt conditions, respectively, seems to be the mechanism by which HsNDK is avoided from the irreversible denaturation. 相似文献
17.
18.
19.
The binding of nucleotides to nucleoside-diphosphate kinase from pig heart was studied using the dye rose Bengal as an optical probe. By difference absorption spectroscopy and by equilibrium dialysis it was shown that one dye molecule strongly bound per enzyme subunit. By competition with nucleotides it was shown that two nucleotide-binding sites exist on each subunit of either unphosphorylated or phosphorylated enzyme: one of them binds ATP or ADP tightly, the other one binds rose Bengal tightly and ADP loosely. As detected by different affinities for rose Bengal the enzyme exists in two conformations: a 'relaxed' conformation induced by the binding of ADP, and a 'tense' conformation induced by the binding of ATP or by phosphorylation. 相似文献