首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chitin synthase (CHS) is an important enzymatic component required for chitin formation in the cuticles and cuticular linings of other tissues. In the present study, a new CHS gene was characterized from the beet army worm Spodoptera exigua (Hübner) (Se). Homologous alignment and phylogenetic analysis of S. exigua CHS (SeCHS) with other related proteins suggest that SeCHS belongs to the class A CHS family (SeCHSA). Northern blot analysis revealed that SeCHSA is transcribed preferentially in the cuticle and tracheae. Further investigation indicated that SeCHSA mRNA is highly expressed in the early and late stages of each larval instar, and consistently expressed in high level during the pupal stage. Using antibody specific for CHS, SeCHS was further localized in the underlying epidermal cells of the integument and tracheal cells, but not in the fat body or Malpighian tubules. These data suggest that SeCHS plays an important role in cuticle formation and development of S. exigua.  相似文献   

3.
4.
5.
The focus of this study was on the characterization and expression of genes encoding enzymes responsible for the synthesis and degradation of chitin, chitin synthase (SfCHSB) and chitinase (SfCHI), respectively, in the midgut of the fall armyworm, Spodoptera frugiperda. Sequences of cDNAs for SfCHSB and SfCHI were determined by amplification of overlapping PCR fragments and the expression patterns of these two genes were analyzed during insect development by RT-PCR. SfCHSB encodes a protein of 1523 amino acids containing several transmembrane segments, whereas SfCHI encodes a protein of 555 amino acids composed of a catalytic domain, a linker region and a chitin-binding domain. SfCHSB is expressed in the midgut during the feeding stages, whereas SfCHI is expressed during the wandering and pupal stages. Both genes are expressed along the whole midgut. Chitin staining revealed that this polysaccharide is present in the peritrophic membrane (PM) only when SfCHSB is expressed. There is little or no chitin in the midgut when SfCHI is expressed. These results support the hypothesis that SfCHSB is responsible for PM chitin synthesis during the larval feeding stages and SfCHI carries out PM chitin degradation during larval-pupal molting, suggesting mutually exclusive temporal patterns of expression of these genes.  相似文献   

6.
7.
《Journal of Asia》2014,17(1):93-97
Insect growth-blocking peptides (GBPs) exhibit growth-blocking and paralytic activity. Low concentrations of GBP stimulate larval growth, whereas high concentrations of GBP significantly retard larval growth. Here, we show that morphological abnormalities and lethality were induced in silkworm (Bombyx mori) larvae by high concentrations of GBP. Active B. mori GBP (BmGBP) was produced by treating recombinant proBmGBP (expressed in baculovirus-infected insect cells) with bovine factor Xa. When silkworm larvae on day 1 of the fifth-instar stage were injected between the seventh and eight abdominal segments with BmGBP (100 or 500 ng/larva), the larval–pupal and pupal–adult transformations of these silkworms were delayed in a dose-dependent manner. However, a high concentration (2000 ng/larva) of BmGBP or Spodoptera exigua GBP (SeGBP) acutely induced morphological abnormalities and death in silkworm larvae. In silkworm larvae treated with high concentrations of GBPs, the ingested food excessively accumulated in the foregut, which caused extreme swelling in both the thorax and the foregut and resulted in larval death. Therefore, these results not only provide insight into the effect of insect GBPs on gut physiology but also reveal a novel function of insect GBPs.  相似文献   

8.
9.
The chitin synthase of Saccharomyces is a plasma membrane-bound zymogen. Following proteolytic activation, the enzyme synthesizes insoluble chitin that has chain length and other physical properties similar to chitin found in bud scars. We isolated mutants lacking chitin synthase activity (chs1) and used these to clone CHS1. The gene has an open reading frame of 3400 bases and encodes a protein of 130 kd. The fission yeast S. pombe lacks chitin synthase and chitin. When a plasmid encoding a CHS1-lacZ fusion protein is introduced into S. pombe, both enzymatic activities are expressed in the same ratio as in S. cerevisiae, demonstrating that CHS1 encodes the structural gene of chitin synthase. Three CHS1 gene disruption experiments were performed. In all cases, strains with the disrupted gene have a recognizable phenotype, lack measurable chitin synthase activity in vitro but are viable, contain normal levels of chitin in vivo, and mate and sporulate efficiently.  相似文献   

10.
Chitin synthase activity was studied in yeast and hyphal forms of Candida albicans. pH-activity profiles showed that yeast and hyphae contain a protease-dependent activity that has an optimum at pH 6.8. In addition, there is an activity that is not activated by proteolysis in vitro and which shows a peak at pH 8.0. This suggests there are two distinct chitin synthases in C. albicans. A gene for chitin synthase from C. albicans (CHS1) was cloned by heterologous expression in a Saccharomyces cerevisiae chs1 mutant. Proof that the cloned chitin synthase is a C. albicans membrane-bound zymogen capable of chitin biosynthesis in vitro was based on several criteria. (i) the CHS1 gene complemented the S. cerevisiae chs1 mutation and encoded enzymatic activity which was stimulated by partial proteolysis; (ii) the enzyme catalyses incorporation of [14C]-GlcNAc from the substrate, UDP[U-14C]-GlcNAc, into alkali-insoluble chitin; (iii) Southern analysis showed hybridization of a C. albicans CHS1 probe only with C. albicans DNA and not with S. cerevisiae DNA; (iv) pH profiles of the cloned enzyme showed an optimum at pH 6.8. This overlaps with the pH-activity profiles for chitin synthase measured in yeast and hyphal forms of C. albicans. Thus, CHS1 encodes only part of the chitin synthase activity in C. albicans. A gene for a second chitin synthase in C. albicans with a pH optimum at 8.0 is proposed. DNA sequencing revealed an open reading frame of 2328 nucleotides which predicts a polypeptide of Mr 88,281 with 776 amino acids. The alignment of derived amino acid sequences revealed that the CHS1 gene from C. albicans (canCHS1) is homologous (37% amino acid identity) to the CHS1 gene from S. cerevisiae (sacCHS1).  相似文献   

11.
12.
13.
14.
15.
16.
Osiris基因在几丁质沉积过程中表达,可能参与昆虫表皮的发育。本研究利用CRISPR/Cas9 基因编辑系统对Osiris24基因进行编辑,进而观察Osiris24突变体果蝇的性状并且检测Osiris24的表达特征。在Osiris24第1外显子设计2个sgRNA靶位点,插入到pCFD4敲除载体骨架中,同时构建酵母Gal4蛋白序列的供体(donor)载体,将2个载体同时注射到nos-Cas9胚胎中获得G0代转基因果蝇。结果显示,G0代基因编辑阳性率为92.8%,Osiris24纯合突变体在胚胎或1龄幼虫期致死,杂合突变体未观察到可见表型。将阳性G0代雄虫与UAS-GFP雌虫杂交,检测不同龄期和不同组织GFP信号表达情况。结果发现,Osiris24在不同龄期幼虫中均有表达,幼虫期主要在体壁、气管、前肠和后肠高表达,蛹期主要在体壁和翅上表达,推测其在果蝇发育中发挥重要作用,本研究为深入探究Osiris基因功能提供了研究模型。  相似文献   

17.
几丁质的去乙酰化修饰与昆虫的发育变态密切相关,几丁质去乙酰化酶(chitin deacetylase,CDA)是这个过程中的关键酶。家蚕(Bombyxmori)是鳞翅目昆虫的代表性昆虫,目前对家蚕CDAs的研究较少。为了更好地揭示BmCDAs对家蚕变态发育的作用,本研究采用生物信息学分析、蛋白表达纯化以及免疫荧光定位等方法对表皮中高量表达的BmCDA2进行了研究。结果发现,BmCDA2有两种mRNA拼接形式BmCDA2a和BmCDA2b,分别在幼虫眠期和化蛹期表皮高量表达,两个基因均有几丁质去乙酰化酶催化结构域(catalyticdomain)、几丁质结合结构域(chitinbinding domain)和低密度脂蛋白受体结构域(low density lipoprotein receptor domain);Western blotting结果显示,该蛋白在表皮存在,荧光免疫定位发现BmCDA2蛋白随着幼虫新表皮的生成而逐渐增多,推测BmCDA2可能参与了幼虫新表皮的形成。该结果丰富了家蚕CDAs的生物学功能信息,也为其他昆虫CDA的研究提供一些有价值的参考。  相似文献   

18.
19.
Regulation of chitin synthesis in the larval midgut of Manduca sexta   总被引:1,自引:0,他引:1  
In insects, chitin is not only synthesized by ectodermal cells that form chitinous cuticles, but also by endodermal cells of the midgut that secrete a chitinous peritrophic matrix. Using anti-chitin synthase (CHS) antibodies, we previously demonstrated that in the midgut of Manduca sexta, CHS is expressed by two cell types, tracheal cells forming a basal tracheal network and columnar cells forming the apical brush border [Zimoch and Merzendorfer, 2002, Cell Tissue Res. 308, 287-297]. Now, we show that two different genes, MsCHS1 and MsCHS2, encode CHSs of midgut tracheae and columnar cells, respectively. To investigate MsCHS2 expression and activity in the course of the larval development, we monitored chitin synthesis, enzyme levels as well as mRNA amounts. All of the tested parameters were significantly reduced during molting and in the wandering stage when compared to the values obtained from intermolt feeding larvae. By contrast, MsCHS1 appeared to be inversely regulated because its mRNA was detectable only during the molt at the time when tracheal growth occurs at the basal site of the midgut. To further examine midgut chitin synthesis, we measured enzyme activity in crude midgut extracts and different membrane fractions. When we analysed trypsin-mediated proteolytic activation, a phenomenon previously reported for insect and fungal systems, we recognized that midgut chitin synthesis was only activated in crude extracts, but not in the 12,000 g membrane fraction. However, proteolytic activation by trypsin in the 12,000 g membrane fraction could be reconstituted by re-adding a soluble fraction, indicating that limited proteolysis affects an unknown soluble factor, a process that in turn activates chitin synthesis.  相似文献   

20.
The CHS5 locus of Saccharomyces cerevisiae is important for wild-type levels of chitin synthase III activity. chs5 cells have reduced levels of this activity. To further understand the role of CHS5 in yeast, the CHS5 gene was cloned by complementation of the Calcofluor resistance phenotype of a chs5 mutant. Transformation of the mutant with a plasmid carrying CHS5 restored Calcofluor sensitivity, wild-type cell wall chitin levels, and chitin synthase III activity levels. DNA sequence analysis reveals that CHS5 encodes a unique polypeptide of 671 amino acids with a molecular mass of 73,642 Da. The predicted sequence shows a heptapeptide repeated 10 times, a carboxy-terminal lysine-rich tail, and some similarity to neurofilament proteins. The effects of deletion of CHS5 indicate that it is not essential for yeast cell growth; however, it is important for mating. Deletion of CHS3, the presumptive structural gene for chitin synthase III activity, results in a modest decrease in mating efficiency, whereas chs5delta cells exhibit a much stronger mating defect. However, chs5 cells produce more chitin than chs3 mutants, indicating that CHS5 plays a role in other processes besides chitin synthesis. Analysis of mating mixtures of chs5 cells reveals that cells agglutinate and make contact but fail to undergo cell fusion. The chs5 mating defect can be partially rescued by FUS1 and/or FUS2, two genes which have been implicated previously in cell fusion, but not by FUS3. In addition, mating efficiency is much lower in fus1 fus2 x chs5 than in fus1 fus2 x wild type crosses. Our results indicate that Chs5p plays an important role in the cell fusion step of mating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号