首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants.Key words: abiotic stress, cross talk, mitogen-activated protein kinases, heat map, MAPK signaling, signal transduction, stress signaling  相似文献   

2.
Successful reproduction of flowering plants requires the appropriate timing of the floral transition, as triggered by environmental and internal cues and as regulated by multiple signaling modules. Among these modules, microRNAs (miRNAs), the evolutionarily conserved regulators, respond to environmental and internal cues and network with other integrators of flowering cues. Moreover, miRNA signaling modules affect the timing of flowering in many plant species. Here, we comprehensively review recent progress in understanding the function of miRNAs and their target genes in flowering time regulation in diverse plant species. We focus on the role of the miRNA-target gene modules in various flowering pathways and their conserved and divergent functions in flowering plants. We also examine, in depth, the crosstalk by sequential activity of miR156 and miR172, two of the most-studied and evolutionarily conserved miRNAs in both annual and perennial plants.  相似文献   

3.
Mitogen-activated protein kinases (MAPKs) are components of a three kinase regulatory cascade. There are multiple members of each component family of kinases in the MAPK module. Specificity of regulation is achieved by organization of MAPK modules, in part, by use of scaffolding and anchoring proteins. Scaffold proteins bring together specific kinases for selective activation, sequestration and localization of signaling complexes. The recent elucidation of scaffolding mechanisms for MAPK pathways has begun to solve the puzzle of how specificity in signaling can be achieved for each MAPK pathway in different cell types and in response to different stimuli. As new MAPK members are defined, determining their organization in kinase modules will be critical in understanding their select role in cellular regulation.  相似文献   

4.
The bacterial pathogen Vibrio parahemeolyticus manipulates host signaling pathways during infections by injecting type III effectors. One of these effectors, Vibrio outer protein A (VopA), inhibits MAPK signaling via a novel mechanism, distinct from those described for other bacterial toxins, that disrupts this signaling pathway. VopA is an acetyltransferase that potently inhibits MAPK signaling pathways not only by preventing the activation of MAPK kinases (MKKs) but also by inhibiting the activity of activated MKKs. VopA acetylates a conserved lysine found in the catalytic loop of all kinases and blocks the binding of ATP, but not ADP, on the MKKs, resulting in an inactive phosphorylated kinase. Acetylation of this conserved lysine inhibits kinase activity by a new mechanism of regulation that has not been observed previously. Identifying the target of VopA reveals a way that the reversible post-translational modification of lysine acetylation can be used to regulate the activity of an enzyme.  相似文献   

5.
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.  相似文献   

6.
MAPK级联途径参与ABA信号转导调节的植物生长发育过程   总被引:2,自引:0,他引:2  
植物激素ABA参与调控植物生长发育和生理代谢以及多种胁迫应答过程,促分裂原活化蛋白激酶(MAPK)级联途径应答于多种生物和非生物胁迫,广泛参与调控植物的生长发育。MAPK级联途径与ABA信号转导协同作用参与调控植物种子萌发、气孔运动和生长发育,本文主要归纳了植物中受ABA调控激活的MAPK级联途径成员,阐述了它们参与ABA信号转导调控植物生理反应和生长发育的过程,并对MAPK级联途径与ABA信号转导的研究方向作出了展望,指出对MAPK下游底物的筛选是完善MAPK级联途径的重要组成部分。  相似文献   

7.

Background

Brachypodium distachyon is emerging as a widely recognized model plant that has very close relations with several economically important Poaceae species. MAPK cascade is known to be an evolutionarily conserved signaling module involved in multiple stresses. Although the gene sequences of MAPK and MAPKK family have been fully identified in B. distachyon, the information related to the upstream MAPKKK gene family especially the regulatory network among MAPKs, MAPKKs and MAPKKKs upon multiple stresses remains to be understood.

Results

In this study, we have identified MAPKKKs which belong to the biggest gene family of MAPK cascade kinases. We have systematically investigated the evolution of whole MAPK cascade kinase gene family in terms of gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication analysis. Our results showed that most BdMAPK cascade kinases were located at the low-CpG-density region, and the clustered members in each group shared similar structures of the genes and proteins. Synteny analysis showed that 62 or 21 pairs of duplicated orthologs were present between B. distachyon and Oryza sativa, or between B. distachyon and Arabidopsis thaliana respectively. Gene expression data revealed that BdMAPK cascade kinases were rapidly regulated by stresses and phytohormones. Importantly, we have constructed a regulation network based on co-expression patterns of the expression profiles upon multiple stresses performed in this study.

Conclusions

BdMAPK cascade kinases were involved in the signaling pathways of multiple stresses in B. distachyon. The network of co-expression regulation showed the most of duplicated BdMAPK cascade kinase gene orthologs demonstrated their convergent function, whereas few of them developed divergent function in the evolutionary process. The molecular evolution analysis of identified MAPK family genes and the constructed MAPK cascade regulation network under multiple stresses provide valuable information for further investigation of the functions of BdMAPK cascade kinase genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1452-1) contains supplementary material, which is available to authorized users.  相似文献   

8.
Plants rely on the innate immune system to defend themselves from pathogen attacks. Reactive oxygen species (ROS) and nitric oxide (NO) play key roles in the activation of disease resistance mechanisms in plants. The evolutionarily conserved mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes and have been implicated in the plant innate immunity. There have been many disputations about the relationship between the radicals (ROS and NO) and MAPK cascades. Recently, we found that MAPK cascades participate in the regulation of the radical burst. Here, we discuss the regulatory mechanisms of the oxidative and NO bursts in response to pathogen attacks, and crosstalk between MAPK signaling and the radical burst.Key words: oxidative burst, MAPK, NADPH oxidase, NO burst, plant immunity  相似文献   

9.
10.
促分裂原活化蛋白激酶(MAPK)级联途径主要MAPKKK、MAPKK和MAPK三个组分构成,彼此逐级磷酸化进而传递细胞信号。这些激酶可以将信息从感应器传递到效应器,并在胞内外信号传递中起多种作用。同时,MAPK级联途径通过相互“交谈”形成复杂的信号传递网络,从而有效地传递各种特异信号。迄今为止,拟南芥AtMPK3、AtMPK4和AtMPK6是研究最多的MAPKs。本文综述AtMPK6参与调控植物对逆境胁迫的响应,以及在生长发育过程中的作用,并介绍AtMPK6与蛋白磷酸酶之间的关系。  相似文献   

11.
Evolution of abscisic acid synthesis and signaling mechanisms   总被引:2,自引:0,他引:2  
  相似文献   

12.
Mitogen-activated protein kinase (MAPK) cascades are key signaling modules downstream of receptors/sensors that perceive either endogenously produced stimuli such as peptide ligands and damage-associated molecular patterns (DAMPs) or exogenously originated stimuli such as pathogen/microbe-associated molecular patterns (P/MAMPs), pathogen-derived effectors, and environmental factors. In this review, we provide a historic view of plant MAPK research and summarize recent advances in the establishment of MAPK cascades as essential components in plant immunity, response to environmental stresses, and normal growth and development. Each tier of the MAPK cascades is encoded by a small gene family, and multiple members can function redundantly in an MAPK cascade. Yet, they carry out a diverse array of biological functions in plants. How the signaling specificity is achieved has become an interesting topic of MAPK research. Future investigations into the molecular mechanism(s) underlying the regulation of MAPK activation including the activation kinetics and magnitude in response to a stimulus, the spatiotemporal expression patterns of all the components in the signaling pathway, and functional characterization of novel MAPK substrates are central to our understanding of MAPK functions and signaling specificity in plants.  相似文献   

13.
MAP kinase (MAPK) signal transduction cascades are conserved eukaryotic pathways that modulate stress responses and developmental processes. In a recent report we have identified novel Arabidopsis MAPKK/MAPK/Substrate signaling pathways using microarrays containing 2,158 unique Arabidopsis proteins. Subsequently, several WRKY and TGA targets phosphorylated by MAPKs were verified in planta. We have also reported that specific MAPKK/MAPK modules expressed in Nicotiana benthamiana induced a cell death phenotype related to the immune response. We have generated a MAPK phosphorylation network based on our protein microarray experimental data. Here we further analyze our network by integrating phosphorylation and gene expression information to identify biologically relevant signaling modules. We have identified 108 phosphorylation events that occur among 96 annotated genes with highly similar pairwise expression profiles. Our analysis brings a new perspective on MAPK signaling by revealing new relationships between components of signaling pathways.Key words: MAPK, protein microarray, network, cell death, co-expression, signaling  相似文献   

14.
Mitogen-activated protein kinases (MAPKs) mediate many of the cellular effects of growth factors, cytokines and stress stimuli. Their activation requires the phosphorylation of a threonine and a tyrosine residue located in a Thr-X-Tyr motif (where X is any amino acid) [1]. This phosphorylation is catalysed by MAPK kinases (MKKs), which are all thought to be ‘dual specificity’ enzymes that phosphorylate both the threonine and the tyrosine residue of the Thr-X-Tyr motif [2]. Here, we report that the MAPK family member known as stress-activated protein kinase-1c (SAPK1c, also known as JNK1) [3] is activated synergistically in vitro by MKK4 ([4], [5] and [6]; also called SKK1 and JNKK1) and MKK7 ([7], [8] and [9]; also called SKK4 and JNKK2). We found that MKK4 had a preference for the tyrosine residue, and MKK7 for the threonine residue, within the Thr-X-Tyr motif. These observations suggest that the full activation of SAPK1c in vivo may sometimes require phosphorylation by two different MKKs, providing the potential for integrating the effects of different extracellular signals. They also raise the possibility that other MAPK family members may be activated by two or more MKKs and that some MKKs may have gone undetected because they phosphorylate the tyrosine residue only, and therefore do not induce any activation unless the threonine has first been phosphorylated by another MKK.  相似文献   

15.
MAPK级联途径调控植物细胞胞质分裂   总被引:1,自引:0,他引:1  
胞质分裂(cytokinesis)是细胞分裂的最后关键一步,产生2个含有完整的遗传物质和胞质细胞器的子细胞.植物胞质分裂包括细胞板的形成,这一过程是在成膜体的牵引下由一些植物特有的步骤完成的.促分裂原活化蛋白激酶(MAPK)级联途径在真核生物中是高度保守的,由MAPKs,MAPKKs,MAPKKKs组成,通过MAPKKK→ MAPKK → MAPK的逐级磷酸化传递细胞信号.近来的研究表明, NACK-MAPKKK→MAPKK→MAPK→MAP65构成的信号途径调控植物细胞的胞质分裂.本文就这一信号途径,总结了植物胞质分裂机制的研究进展,并对其中的问题进行了讨论与展望.  相似文献   

16.
Genetic and biochemical studies have revealed that the diversity of cell types and developmental patterns evident within the animal kingdom is generated by a handful of conserved, core modules. Core biological modules must be robust, able to maintain functionality despite perturbations, and yet sufficiently adaptable for random mutations to generate phenotypic variation during evolution. Understanding how robust, adaptable modules have influenced the evolution of eukaryotes will inform both evolutionary and synthetic biology. One such system is the MAP kinase module, which consists of a 3-tiered kinase circuit configuration that has been evolutionarily conserved from yeast to man. MAP kinase signal transduction pathways are used across eukaryotic phyla to drive biological functions that are crucial for life. Here we ask the fundamental question, why do MAPK modules follow a conserved 3-tiered topology rather than some other number? Using computational simulations, we identify a fundamental 2-tiered circuit topology that can be readily reconfigured by feedback loops and scaffolds to generate diverse signal outputs. When this 2-kinase circuit is connected to proximal input kinases, a 3-tiered modular configuration is created that is both robust and adaptable, providing a biological circuit that can regulate multiple phenotypes and maintain functionality in an uncertain world. We propose that the 3-tiered signal transduction module has been conserved through positive selection, because it facilitated the generation of phenotypic variation during eukaryotic evolution.  相似文献   

17.
18.
19.
20.
Wang L  Yang Z  Li Y  Yu F  Brindley PJ  McManus DP  Wei D  Han Z  Feng Z  Li Y  Hu W 《FEBS letters》2006,580(15):3677-3686
At present, little is known about signal transduction mechanisms in schistosomes, which cause the disease of schistosomiasis. The mitogen-activated protein kinase (MAPK) signaling pathways, which are evolutionarily conserved from yeast to Homo sapiens, play key roles in multiple cellular processes. Here, we reconstructed the hypothetical MAPK signaling pathways in Schistosoma japonicum and compared the schistosome pathways with those of model eukaryote species. We identified 60 homologous components in the S. japonciumMAPK signaling pathways. Among these, 27 were predicted to be full-length sequences. Phylogenetic analysis of these proteins confirmed the evolutionary conservation of the MAPK signaling pathways. Remarkably, we identified S. japonicum homologues of GTP-binding protein beta and alpha-I subunits in the yeast mating pathway, which might be involved in the regulation of different life stages and female sexual maturation processes as well in schistosomes. In addition, several pathway member genes, including ERK, JNK, Sja-DSP, MRAS and RAS, were determined through quantitative PCR analysis to be expressed in a stage-specific manner, with ERK, JNK and their inhibitor Sja-DSP markedly upregulated in adult female schistosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号