首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is difficult to study the breakdown of lumbar disc tissue over several years of exposure to bending and lifting by experimental methods. In our earlier published study we have shown how a finite element model of a healthy lumbar motion segment was used to predict the damage accumulation location and number of cyclic to failure under different loading conditions. The aim of the current study was to extend the continuum damage mechanics formulation to the degenerated discs and investigate the initiation and progression of mechanical damage. Healthy disc model was modified to represent degenerative discs (Thompson grade III and IV) by incorporating both geometrical and biochemical changes due to degeneration. Analyses predicted decrease in the number of cycles to failure with increasing severity of disc degeneration. The study showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery in healthy and grade III degenerated discs. The damage accumulated preferentially in the posterior region of the annulus. However in grade IV degenerated disc damage initiated at the posterior outer periphery of the annulus and propagated circumferentially. The finite element model predictions were consistent with the infrequent occurrence of rim lesions at early age but a much higher incidence in severely degenerated discs.  相似文献   

2.
Understanding the relationship between repetitive lifting and the breakdown of disc tissue over several years of exposure is difficult to study in vivo and in vitro. The aim of this investigation was to develop a three-dimensional poroelastic finite element model of a lumbar motion segment that reflects the biological properties and behaviors of in vivo disc tissues including swelling pressure due to the proteoglycans and strain-dependent permeability and porosity. It was hypothesized that when modeling the annulus, prescribing tissue specific material properties will not be adequate for studying the in vivo loading and unloading behavior of the disc. Rather, regional variations of these properties, which are known to exist within the annulus, must also be included. Finite element predictions were compared to in vivo measurements published by Tyrrell et al. (1985) of percent change in total stature for two loading protocols, short-term creep loading and standing recovery and short-term cyclic loading with standing recovery. The model in which the regional variations of material properties in the annulus had been included provided an overall better prediction of the in vivo behavior as compared to the model in which the annulus properties were assumed to be homogenous. This model will now be used to study the relationship between repetitive lifting and disc degeneration.  相似文献   

3.
Load-displacement properties of lower cervical spine motion segments   总被引:12,自引:0,他引:12  
The load-displacement behavior of 35 fresh adult cervical spine motion segments was measured in compression, shear, flexion, extension, lateral bending and axial torsion tests. Motion segments were tested both intact and with posterior elements removed. Applied forces ranged to 73.6 N in compression and to 39 N in shear, while applied moments ranged to 2.16 Nm. For each mode of loading, principal and coupled motions were measured and stiffnesses were calculated. The effect of disc degeneration on motion segment stiffnesses and the moments required for motion segment failure were also measured. In compression, the stiffnesses of the cervical motion segments were similar to those of thoracic and lumbar motion segments. In other modes of loading, cervical stiffnesses were considerably smaller than thoracic or lumbar stiffnesses. Removal of the posterior elements decreased cervical motion segment stiffnesses by as much as 50%. Degenerated cervical discs were less stiff in compression and stiffer in shear than less degenerated discs, but in bending or axial torsion, no statistically significant differences were evident. Bending moments causing failure were an order of magnitude lower than those for lumbar segments.  相似文献   

4.
5.
The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2-L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix compressive/shear stresses and anulus fibers strain. The mechanical responses with respect to the two most-relevant variables were then regressed linearly using the response surface quadratic model. Axial force and sagittal rotation were identified as the most-relevant variables for mechanical responses. The procedure developed can be used to find the critical loading for finite element models with multi input variables. The derived meta-models can be used to predict the risk associated with various loading parameters and in setting safer load limits.  相似文献   

6.
The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2–L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix compressive/shear stresses and anulus fibers strain. The mechanical responses with respect to the two most-relevant variables were then regressed linearly using the response surface quadratic model. Axial force and sagittal rotation were identified as the most-relevant variables for mechanical responses. The procedure developed can be used to find the critical loading for finite element models with multi input variables. The derived meta-models can be used to predict the risk associated with various loading parameters and in setting safer load limits.  相似文献   

7.
Damage of the annulus fibrosus is implicated in common spinal pathologies. The objective of this study was to obtain a quantitative relationship between both the number of cycles and the magnitude of tensile strain resulting in damage to the annulus fibrosus. Four rectangular tensile specimens oriented in the circumferential direction were harvested from the outer annulus of 8 bovine caudal discs (n = 32) and subjected to one of four tensile testing protocols: (i) ultimate tensile strain (UTS) test; (ii) baseline cyclic test with 4 series of 400 cycles of baseline cyclic loading (peak strain = 20% UTS); (iii & iv) acute and fatigue damage cyclic tests consisting of 4 x 400 cycles of baseline cyclic loading with intermittent loading to 1 and 100 cycles, respectively, with peak tensile strain of 40%, 60%, and 80% UTS. Normalized peak stress for all mechanically loaded specimens was reduced from 0.89 to 0.11 of the baseline control levels, and depended on the magnitude of damaging strain and number of cycles at that damaging strain. Baseline, acute, and fatigue protocols resulted in permanent deformation of 3.5%, 6.7% and 9.6% elongation, respectively. Damage to the laminate structure of the annulus in the absence of biochemical activity in this study was assessed using histology, transmission electron microscopy, and biochemical measurements and was most likely a result of separation of annulus layers (i.e., delamination). Permanent elongation and stress reduction in the annulus may manifest in the motion segment as sub-catastrophic damage including increased neutral zone, disc bulging, and loss of nucleus pulposus pressure. The preparation of rectangular tensile strip specimens required cutting of collagen fibers and may influence absolute values of results, however, it is not expected to affect the comparisons between loading groups or dose-response reported.  相似文献   

8.
The current study investigated mechanical predictors for the development of adjacent disc degeneration. A 3-D finite element model of a lumbar spine was modified to simulate two grades of degeneration at the L4–L5 disc. Degeneration was modeled by changes in geometry and material properties. All models were subjected to follower preloads of 800 N and moment loads in the three principal directions of motion using a hybrid protocol. Degeneration caused changes in the loading and motion patterns of the segments above and below the degenerated disc. At the level (L3–L4) above the degenerated disc, the motion increased due to moderate degeneration by 21% under lateral bending, 26% under axial rotation and 28% under flexion/extension. At the level (L5-S1) below the degenerated disc, motion increased only during lateral bending by 20% due to moderate degeneration. Both the L3–L4 and L5-S1 segment showed a monotonic increase in both the maximum von Mises stress and shear stress in the annulus as degeneration progressed for all loading directions, expect extension at L3–L4. The most significant increase in stress was observed at the L5-S1 level during axial rotation with nearly a ten-fold increase in the maximum shear stress and 103% increase in the maximum von Mises stress. The L5-S1 segment also showed a progressive increase in facet contact force for all loading directions with degeneration. Nucleus pressure did not increase significantly for any loading direction at either the caudal or cephalic adjacent segment. Results suggest that single-level degeneration can increase the risk for injury at the adjacent levels.  相似文献   

9.
A nonlinear finite element program has been developed and applied to the analysis of a three-dimensional model of the lumbar L2-3 motion segment subjected to sagittal plane moments. The analysis accounts for both material and geometric nonlinearities and is based on the Updated Lagrangian approach. The disc nucleus has been considered as an incompressible inviscid fluid and the annulus as a composite of collagenous fibres embedded in a matrix of ground substance. Articulation at the facet joints has been treated as a general moving contact problem and the spinal ligaments have been modelled as a collection of nonlinear axial elements. Effects of the loss of intradiscal pressure in flexion and of facetectomy in extension have been analyzed. Comparison of the predicted gross response characteristics with available measurements indicates satisfactory agreement. In flexion relatively large intradiscal pressures are generated, while in extension negative pressures (i.e. suction) of low magnitude are predicted. The stress distribution results indicate that the load transfer path through the posterior elements of the joint in flexion is different from that in extension. In flexion the ligaments are the means of load transfer, while in extension the load is transmitted through the pedicles, laminae and articular processes. In flexion, the inner annulus fibres at the posterolateral location are subject to maximum tensile strain. It is suggested that large flexion moment in combination with other loads is a likely cause of disc prolapse commonly found at this location of the annulus.  相似文献   

10.
To date, studies that have investigated the kinematics of spinal motion segments have largely focused on the contributions that the spinal ligaments play in the resultant motion patterns. However, the specific roles played by intervertebral disk components, in particular the annulus fibrosus, with respect to global motion is not well understood in spite of the relatively large literature base with respect to the local ex vivo mechanical properties of the tissue. The primary objective of this study was to implement the nonlinear and orthotropic mechanical behavior of the annulus fibrosus in a finite element model of an L4/L5 functional spinal unit in the form of a strain energy potential where the individual mechanical contributions of the ground substance and fibers were explicitly defined. The model was validated biomechanically under pure moment loading to ensure that the individual role of each soft tissue structure during load bearing was consistent throughout the physiologically relevant loading range. The fibrous network of the annulus was found to play critical roles in limiting the magnitude of the neutral zone and determining the stiffness of the elastic zone. Under flexion, lateral bending, and axial rotation, the collagen fibers were observed to bear the majority of the load applied to the annulus fibrosus, especially in radially peripheral regions where disk bulging occurred. For the first time, our data explicitly demonstrate that the exact fiber recruitment sequence is critically important for establishing the range of motion and neutral zone magnitudes of lumbar spinal motion segments.  相似文献   

11.
12.
The technique used to incise the disc during discectomy may play a role in the subsequent healing and change in biomechanical stiffness of the disc. Several techniques of lumbar disc annulotomy have been described in clinical reports. The purpose of this paper was to study the influence of annulotomy technique on motion segment stiffness using a finite element model. Four incision methods (square, circular, cross, and slit) were compared. The analyses showed that each of the annular incisions produced increase in motions under axial moment loadings with circular incision producing the largest change in the corresponding rotational motion. Under shear loading mode, cross and slit-type annular incisions produced slightly larger changes in the principal motions of the disc than square and circular incisions. All other incision types considered in the current study produced negligibly small increase in motion under rest of the loading conditions. In addition to annulotomy, when nucleotomy was also included in the analyses, once again cross and slit incisions produced larger change in motion under shear loading mode as compared to the other two incision types. A comparison between the four types of annular incisions showed that cross incision produced an increase in motion larger than those produced by the other three incisions under flexion/extension and lateral moment loading and both shear force loadings. Circular incision produced the largest increase in motion under axial moment load in comparison to those produced by square, cross, and slit incisions. Sagittal plane symmetry was influenced by the incision injury to the motion segment leading to coupled motions as well as increased facet loads. From the study it can be concluded that the increase inflexibility of the disc due to annulotomy depends on the type of annulotomy and the annulotomy also produce asymmetrical deformations leading to increased facet loading.  相似文献   

13.
Previous studies postulated that an axial compression of lumbar intervertebral discs causes a complex strain pattern on the annulus. This pattern is not fully understood, since most studies measured only the uniaxial ultimate tensile strain of the annulus. The aim of this study was to investigate surface strains and their relation to disc bulging. This work was extended to study some defects that are relevant for the intermediate process of finite element modeling. Six specimens (L2-3) with a median age of 51 years were utilized for this in vitro study. Specimens were loaded with pure moments (2.5-7.5Nm) in the principal directions. The anatomy was subsequently reduced in three steps: (1) ligamentous and bony posterior structures, (2) anterior and posterior ligaments and (3) nucleus. Measured were ranges of motion, three-dimensional disc bulging and surface strains of the outer annulus. Lateral bending showed the largest axial strains (9.7%) for intact specimens, which increased to 15.1% after the removal of posterior structures. Disc bulging was largest in flexion with 1.56mm, which increased to 2.06mm after step (1). Defect (2) caused that flexion yielded the largest axial strains with 22.6% and 2.17mm of bulging. We could also determine a constriction effect of these ligaments. Nucleotomy did not essentially increase anterior disc bulging in flexion, but inward disc bulging increased by 0.55mm, in extension. Due to the increase in the complexity of finite element models, it is difficult to obtain data from the literature for validation purposes. This study presents new data, which assist in the development of such models.  相似文献   

14.
A statistical factorial analysis approach was conducted on a poroelastic finite element model of a lumbar intervertebral disc to analyse the influence of six material parameters (permeabilities of annulus, nucleus, trabecular vertebral bone, cartilage endplate and Young's moduli of annulus and nucleus) on the displacement, fluid pore pressure and velocity fields. Three different loading modes were investigated: compression, flexion and axial rotation. Parameters were varied considering low and high levels in agreement with values found in the literature for both healthy and degenerated lumbar discs. Results indicated that annulus stiffness and cartilage endplate permeability have a strong effect on the overall fluid- and solid-phase responses in all loading conditions studied. Nucleus stiffness showed its main relevance in compression while annulus permeability influenced mainly the annular pressure field. This study confirms the permeability's central role in biphasic modelling and highlights for the lumbar disc which experiments of material property characterization should be performed. Moreover, such sensitivity study gives important guidelines in poroelastic material modelling and finite element disc validation.  相似文献   

15.
Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.  相似文献   

16.
Compared to a healthy intervertebral disc, the geometry and the material properties of the involved tissues are altered in a degenerated disc. It is not completely understood how this affects the mechanical behaviour of a motion segment. In order to study the influence of disc degeneration on motion segment mechanics a three-dimensional, nonlinear finite element model of the L3/L4 functional unit was used. Different grades of disc degeneration were simulated by varying disc height and bulk modulus of the nucleus pulposus. The model was loaded with pure moments of 10Nm in the three main anatomic planes. The finite element model predicted the same trends for intersegmental rotation and intradiscal pressure as described in the literature for in vitro studies. A comparison between calculated intersegmental rotation and experimental data showed a mean difference of 1.9 degrees while the mean standard deviation was 2.5 degrees . A mildly degenerated disc increases intersegmental rotation for all loading cases. With further increasing disc degeneration intersegmental rotation is decreased. For axial rotation the decrease takes place in the final stage. Intradiscal pressure is lower while facet joint force and maximum von Mises stress in the annulus are higher in a degenerated compared to a healthy disc.  相似文献   

17.
The Coflex device may provide stability to the surgical segment in extension but does not restore stability in other motion. Recently, a modified version called the Coflex rivet has been developed. The effects of Coflex and Coflex rivet implantation on the adjacent segments are still not clear; therefore, the purpose of this study was to investigate the biomechanical differences between Coflex and Coflex rivet implantation by using finite element analyses. The results show that the Coflex implantation can provide stability in extension, lateral bending, and axial rotation at the surgical segment, and it had no influence at adjacent segments except for extension. The Coflex rivet implantation can provide stability in all motions and reduce disc annulus stress at the surgical segment. Therefore, the higher range of motion and stress induced by the Coflex rivet at both adjacent discs may result in adjacent segment degeneration in flexion and extension.  相似文献   

18.
The Coflex device may provide stability to the surgical segment in extension but does not restore stability in other motion. Recently, a modified version called the Coflex rivet has been developed. The effects of Coflex and Coflex rivet implantation on the adjacent segments are still not clear; therefore, the purpose of this study was to investigate the biomechanical differences between Coflex and Coflex rivet implantation by using finite element analyses. The results show that the Coflex implantation can provide stability in extension, lateral bending, and axial rotation at the surgical segment, and it had no influence at adjacent segments except for extension. The Coflex rivet implantation can provide stability in all motions and reduce disc annulus stress at the surgical segment. Therefore, the higher range of motion and stress induced by the Coflex rivet at both adjacent discs may result in adjacent segment degeneration in flexion and extension.  相似文献   

19.

Purpose

Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disc diseases. The constructs intended for segmental stability are varied in MI-TLIF. We adopted finite element (FE) analysis to compare the stability after different construct fixations using interbody cage with posterior pedicle screw-rod or pedicle screw-plate instrumentation system.

Methods

A L3–S1 FE model was modified to simulate decompression and fusion at L4–L5 segment. Fixation modes included unilateral plate (UP), unilateral rod (UR), bilateral plate (BP), bilateral rod (BR) and UP+UR fixation. The inferior surface of the S1 vertebra remained immobilized throughout the load simulation, and a bending moment of 7.5 Nm with 400N pre-load was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Range of motion (ROM) and Von Mises stress were evaluated for intact and instrumentation models in all loading planes.

Results

All reconstructive conditions displayed decreased motion at L4–L5. The pedicle screw-plate system offered equal ROM to pedicle screw-rod system in unilateral or bilateral fixation modes respectively. Pedicle screw stresses for plate system were 2.2 times greater than those for rod system in left lateral bending under unilateral fixation. Stresses for plate were 3.1 times greater than those for rod in right axial rotation under bilateral fixation. Stresses on intervertebral graft for plate system were similar to rod system in unilateral and bilateral fixation modes respectively. Increased ROM and posterior instrumentation stresses were observed in all loading modes with unilateral fixation compared with bilateral fixation in both systems.

Conclusions

Transforaminal lumbar interbody fusion augmentation with pedicle screw-plate system fixation increases fusion construct stability equally to the pedicle screw-rod system. Increased posterior instrumentation stresses are observed in all loading modes with plate fixation, and bilateral fixation could reduce stress concentration.  相似文献   

20.
Many investigators have performed studies on specific defect situations or determined the contribution on isolated structures. Investigating the contribution of functional structures requires obtaining the kinematic response directly on spinal segments. The purpose of this study was to quantify the function of anatomical components on lumbar segments for different loading magnitudes. Eight spinal segments (L4-5) with a median age of 52 years (ranging from 38 to 59 years) and a low degree of disc degeneration were utilized for the in vitro testing. Specimens were mounted in a custom-built spine tester and loaded with pure moments (1-10 N m) to move within three anatomical planes at a loading rate of 1.0 degrees /s. Anatomy was successively reduced by: ligaments, facet capsules, joints and nucleus. Data were evaluated for range of motion, neutral zone and lordosis angle. Transection of posterior ligaments predominantly increased specimen flexion for all bending moments applied. Supraspinous ligament also indicated to resist in extension slightly, whereas the facet capsules did not. Facet joints contributed to axial rotation, but not in lateral bending. The anterior longitudinal ligament was found to slightly resist in axial rotation, but strongly in extension. Nucleotomy caused largest increase of all movements. The unloaded posture of the specimens changed after ligament dissection, indicating ligament pretension. The region of lumbar spine is interesting for finite element (FE) simulation due to the high evidence of disc degeneration and injuries. This study may help to understand the function of specific anatomical structures and assists in FE model calibration. We suggest to start a calibration procedure for such models with the smallest functional structure (annulus) and to cumulatively add further structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号