首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chloroplast biogenesis needs to be well coordinated with cell division and cell expansion during plant growth and development to achieve optimal photosynthesis rates. Previous studies showed that gibberellins (GAs) regulate many important plant developmental processes, including cell division and cell expansion. However, the relationship between chloroplast biogenesis with cell division and cell expansion, and how GA coordinately regulates these processes, remains poorly understood. In this study, we showed that chloroplast division was significantly reduced in the GA‐deficient mutants of Arabidopsis (ga1‐3) and Oryza sativa (d18‐AD), accompanied by the reduced expression of several chloroplast division‐related genes. However, the chloroplasts of both mutants exhibited increased grana stacking compared with their respective wild‐type plants, suggesting that there might be a compensation mechanism linking chloroplast division and grana stacking. A time‐course analysis showed that cell expansion‐related genes tended to be upregulated earlier and more significantly than the genes related to chloroplast division and cell division in GA‐treated ga1‐3 leaves, suggesting the possibility that GA may promote chloroplast division indirectly through impacting leaf mesophyll cell expansion. Furthermore, our cellular and molecular analysis of the GA‐response signaling mutants suggest that RGA and GAI are the major repressors regulating GA‐induced chloroplast division, but other DELLA proteins (RGL1, RGL2 and RGL3) also play a role in repressing chloroplast division in Arabidopsis. Taken together, our data show that GA plays a critical role in controlling and coordinating cell division, cell expansion and chloroplast biogenesis through influencing the DELLA protein family in both dicot and monocot plant species.  相似文献   

3.
4.
5.
Bioactive gibberellins (GAs) are known regulators of shoot growth and development in plants. In an attempt to identify where GAs are formed, we have analyzed the expression patterns of six GA biosynthesis genes and two genes with predicted roles in GA signaling and responses in relation to measured levels of GAs. The analysis was based on tangential sections, giving tissue-specific resolution across the cambial region of aspen trees (Populus tremula). Gibberellin quantification by GC/MS-SRM showed that the bioactive GA1 and GA4 were predominantly located in the zone of expansion of xylem cells. Based on co-localization of the expression of the late GA biosynthesis gene GA 20-oxidase 1 and bioactive GAs, we suggest that de novo GA biosynthesis occurs in the expanding xylem. However, expression levels of the first committed GA biosynthesis enzyme, ent-copalyl diphosphate synthase, were high in the phloem, suggesting that a GA precursor(s) may be transported to the xylem. The expression of the GA signaling and response genes DELLA-like1 and GIP-like1 coincided well with sites of high bioactive GA levels. We therefore suggest that the main role of GA during wood formation is to regulate early stages of xylem differentiation, including cell elongation.  相似文献   

6.
To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement.  相似文献   

7.
Phytohormones are integral to the regulation of fruit development and maturation. This review expands upon current understanding of the relationship between hormone signaling and fruit development, emphasizing fleshy fruit and highlighting recent work in the model crop tomato (Solanum lycopersicum) and additional species. Fruit development comprises fruit set initiation, growth, and maturation and ripening. Fruit set transpires after fertilization and is associated with auxin and gibberellic acid (GA) signaling. Interaction between auxin and GAs, as well as other phytohormones, is mediated by auxin-responsive Aux/IAA and ARF proteins. Fruit growth consists of cell division and expansion, the former shown to be influenced by auxin signaling. While regulation of cell expansion is less thoroughly understood, evidence indicates synergistic regulation via both auxin and GAs, with input from additional hormones. Fruit maturation, a transitional phase that precipitates ripening, occurs when auxin and GA levels subside with a concurrent rise in abscisic acid (ABA) and ethylene. During fruit ripening, ethylene plays a clear role in climacteric fruits, whereas non-climacteric ripening is generally associated with ABA. Recent evidence indicates varying requirements for both hormones within both ripening physiologies, suggesting rebalancing and specification of roles for common regulators rather than reliance upon one. Numerous recent discoveries pertaining to the molecular basis of hormonal activity and crosstalk are discussed, while we also note that many questions remain such as the molecular basis of additional hormonal activities, the role of epigenome changes, and how prior discoveries translate to the plethora of angiosperm species.  相似文献   

8.
9.
10.
水稻茎伸长生长与植物激素   总被引:19,自引:1,他引:18  
季兰  杨仁崔 《植物学通报》2002,19(1):109-115
赤霉素(GA),生长素(IAA),脱落酸(ABA)和乙烯影响水稻茎(或节间)的伸长,其中赤霉素与水稻茎伸长生长的关系最密切。GA1是植物体内刺激茎伸长的至关重要的赤霉素,GA3已作为最常用的外源激素诱导水稻的节间伸长。水稻茎秆的伸受激素浓度和敏感性的双重控制,激素浓度或敏感性任一方的改变都有可能导致株高的变异。赤霉素如此显著地促进茎的伸长可能与增加细胞分裂和促使细胞壁松弛有关。而生长素主要促进细胞伸长。植物激素促进水稻茎长的分子机理的研究已有较大的进展,预期这方面的研究和应用在未来几年内将有新的突破。  相似文献   

11.
水稻茎伸长生长与植物激素   总被引:2,自引:0,他引:2  
季兰  杨仁崔 《植物学报》2002,19(1):109-115
赤霉素(GA)、生长素(IAA)、脱落酸(ABA)和乙烯影响水稻茎(或节间)的伸长,其中赤霉素与水稻茎伸长生长的关系最密切。GA1是植物体内刺激茎伸长的至关重要的赤霉素, GA3已作为最常用的外源激素诱导水稻的节间伸长。水稻茎秆的伸长受激素浓度和敏感性的双重控制,激素浓度或敏感性任一方的改变都有可能导致株高的变异。赤霉素如此显著地促进茎的伸长可能与增加细胞分裂和促使细胞壁松弛有关。而生长素主要促进细胞伸长。植物激素促进水稻茎伸长的分子机理的研究已有较大的进展,预期这方面的研究和应用在未来几年内将有新的突破。  相似文献   

12.
13.
Gibberellins (GAs) are key regulators of plant growth and development. They promote growth by targeting the degradation of DELLA repressor proteins; however, their site of action at the cellular, tissue or organ levels remains unknown. To map the site of GA action in regulating root growth, we expressed gai, a non-degradable, mutant DELLA protein, in selected root tissues. Root growth was retarded specifically when gai was expressed in endodermal cells. Our results demonstrate that the endodermis represents the primary GA-responsive tissue regulating organ growth and that endodermal cell expansion is rate-limiting for elongation of other tissues and therefore of the root as a whole.  相似文献   

14.
The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion.  相似文献   

15.
Organ size is determined by cell number and size, and involves two fundamental processes: cell proliferation and cell expansion. Although several plant hormones are known to play critical roles in shaping organ size by regulating the cell cycle, it is not known whether brassinosteroids (BRs) are also involved in regulating cell division. Here we identified a rice T-DNA insertion mutant for organ size, referred to as xiao, that displays dwarfism and erect leaves, typical BR-related phenotypes, together with reduced seed setting. XIAO is predicted to encode an LRR kinase. The small stature of the xiao mutant resulted from reduced organ sizes due to decreased cell numbers resulting from reduced cell division rate, as supported by the observed co-expression of XIAO with a number of genes involved in cell cycling. The xiao mutant displayed a tissue-specific enhanced BR response and greatly reduced BR contents at the whole-plant level. These results indicated that XIAO is a regulator of BR signaling and cell division. Thus, XIAO may provide a possible connection between BRs and cell-cycle regulation in controlling organ growth.  相似文献   

16.
We conducted kinematic and cytological studies on "between vein" epidermal cells of the gibberellin (GA)-deficient M489 dwarf mutant of barley (Hordeum vulgare L. Himalaya). GAs affect radial and axial components of cell expansion and cortical microtubule orientation. Adaxial cells in particular expand radially after leaving the elongation zone (EZ), probably as part of leaf unrolling. Exogenous gibberellic acid corrects the mutant's short, wide blades, short EZ, and slow elongation rate. Cell production rates increase more on the adaxial than on the abaxial surface. Cells spend equal periods of time elongating in dwarf and tall plants, but relative elemental growth rates start to decline sooner in the dwarf. GA increased the rate at which longitudinal wall area increased because the increased axial growth more than compensated for reduced radial growth. In dwarf leaves, increased radial expansion was detected in basal parts of the EZ before cortical microtubules lost transverse orientation in the distal elongation zone. We conclude that loss of microtubule orientation is not required for low GA levels to reduce growth anisotropy.  相似文献   

17.
Fruit development is usually triggered by ovule fertilization, and it requires coordination between seed development and the growth and differentiation of the ovary to host the seeds. Hormones are known to synchronize these two processes, but the role of each hormone, and the mechanism by which they interact, are still unknown. Here we show that auxin and gibberellins (GAs) act in a hierarchical scheme. The synthetic reporter construct DR5:GFP showed that fertilization triggered an increase in auxin response in the ovules, which could be mimicked by blocking polar auxin transport. As the application of GAs did not affect auxin response, the most likely sequence of events after fertilization involves auxin-mediated activation of GA synthesis. We have confirmed this, and have shown that GA biosynthesis upon fertilization is localized specifically in the fertilized ovules. Furthermore, auxin treatment caused changes in the expression of GA biosynthetic genes similar to those triggered by fertilization, and also restricted to the ovules. Finally, GA signaling was activated in ovules and valves, as shown by the rapid downregulation of the fusion protein RGA-GFP after pollination and auxin treatment. Taken together, this evidence suggests a model in which fertilization would trigger an auxin-mediated promotion of GA synthesis specifically in the ovule. The GAs synthesized in the ovules would be then transported to the valves to promote GA signaling and thus coordinate growth of the silique.  相似文献   

18.
Modelling and simulation are increasingly used as tools in the study of plant growth and developmental processes. By formulating experimentally obtained knowledge as a system of interacting mathematical equations, it becomes feasible for biologists to gain a mechanistic understanding of the complex behaviour of biological systems. In this review, the modelling tools that are currently available and the progress that has been made to model plant development, based on experimental knowledge, are described. In terms of implementation, it is argued that, for the modelling of plant organ growth, the cellular level should form the cornerstone. It integrates the output of molecular regulatory networks to two processes, cell division and cell expansion, that drive growth and development of the organ. In turn, these cellular processes are controlled at the molecular level by hormone signalling. Therefore, combining a cellular modelling framework with regulatory modules for the regulation of cell division, expansion, and hormone signalling could form the basis of a functional organ growth simulation model. The current state of progress towards this aim is that the regulation of the cell cycle and hormone transport have been modelled extensively and these modules could be integrated. However, much less progress has been made on the modelling of cell expansion, which urgently needs to be addressed. A limitation of the current generation models is that they are largely qualitative. The possibilities to characterize existing and future models more quantitatively will be discussed. Together with experimental methods to measure crucial model parameters, these modelling techniques provide a basis to develop a Systems Biology approach to gain a fundamental insight into the relationship between gene function and whole organ behaviour.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号