首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
The SIRT1 deacetylase inhibits fat synthesis and stimulates fat oxidation in response to fasting, but the underlying mechanisms remain unclear. Here we report that SREBP-1c, a key lipogenic activator, is an in vivo target of SIRT1. SIRT1 interaction with SREBP-1c was increased during fasting and decreased upon feeding, and consistently, SREBP-1c acetylation levels were decreased during fasting in mouse liver. Acetylated SREBP-1c levels were also increased in HepG2 cells treated with insulin and glucose to mimic feeding conditions, and down-regulation of p300 by siRNA decreased the acetylation. Depletion of hepatic SIRT1 by adenoviral siRNA increased acetylation of SREBP-1c with increased lipogenic gene expression. Tandem mass spectrometry and mutagenesis studies revealed that SREBP-1c is acetylated by p300 at Lys-289 and Lys-309. Mechanistic studies using acetylation-defective mutants showed that SIRT1 deacetylates and inhibits SREBP-1c transactivation by decreasing its stability and its occupancy at the lipogenic genes. Remarkably, SREBP-1c acetylation levels were elevated in diet-induced obese mice, and hepatic overexpression of SIRT1 or treatment with resveratrol, a SIRT1 activator, daily for 1 week decreased acetylated SREBP-1c levels with beneficial functional outcomes. These results demonstrate an intriguing connection between elevated SREBP-1c acetylation and increased lipogenic gene expression, suggesting that abnormally elevated SREBP-1c acetylation increases SREBP-1c lipogenic activity in obese mice. Reducing acetylation of SREBP-1c by targeting SIRT1 may be useful for treating metabolic disorders, including fatty liver, obesity, and type II diabetes.  相似文献   

8.
9.
10.
Hepatic steatosis is associated with insulin resistance and metabolic syndrome because of increased hepatic triglyceride content. We have reported previously that deficiency of response gene to complement 32 (RGC-32) prevents high-fat diet (HFD)-induced obesity and insulin resistance in mice. This study was conducted to determine the role of RGC-32 in the regulation of hepatic steatosis. We observed that hepatic RGC-32 was induced dramatically by both HFD challenge and ethanol administration. RGC-32 knockout (RGC32−/−) mice were resistant to HFD- and ethanol-induced hepatic steatosis. The hepatic triglyceride content of RGC32−/− mice was decreased significantly compared with WT controls even under normal chow conditions. Moreover, RGC-32 deficiency decreased the expression of lipogenesis-related genes, sterol regulatory element binding protein 1c (SREBP-1c), fatty acid synthase, and stearoyl-CoA desaturase 1 (SCD1). RGC-32 deficiency also decreased SCD1 activity, as indicated by decreased desaturase indices of the liver and serum. Mechanistically, insulin and ethanol induced RGC-32 expression through the NF-κB signaling pathway, which, in turn, increased SCD1 expression in a SREBP-1c-dependent manner. RGC-32 also promoted SREBP-1c expression through activating liver X receptor. These results demonstrate that RGC-32 contributes to the development of hepatic steatosis by facilitating de novo lipogenesis through activating liver X receptor, leading to the induction of SREBP-1c and its target genes. Therefore, RGC-32 may be a potential novel drug target for the treatment of hepatic steatosis and its related diseases.  相似文献   

11.
Non-alcoholic fatty liver disease is prevalent in human obesity and type 2 diabetes, and is characterized by increases in both hepatic triglyceride accumulation (denoted as steatosis) and expression of pro-inflammatory cytokines such as IL-1β. We report here that the development of hepatic steatosis requires IL-1 signaling, which upregulates Fatty acid synthase to promote hepatic lipogenesis. Using clodronate liposomes to selectively deplete liver Kupffer cells in ob/ob mice, we observed remarkable amelioration of obesity-induced hepatic steatosis and reductions in liver weight, triglyceride content and lipogenic enzyme expressions. Similar results were obtained with diet-induced obese mice, although visceral adipose tissue macrophage depletion also occurred in response to clodronate liposomes in this model. There were no differences in the food intake, whole body metabolic parameters, serum β-hydroxybutyrate levels or lipid profiles due to clodronate-treatment, but hepatic cytokine gene expressions including IL-1β were decreased. Conversely, treatment of primary mouse hepatocytes with IL-1β significantly increased triglyceride accumulation and Fatty acid synthase expression. Furthermore, the administration of IL-1 receptor antagonist to obese mice markedly reduced obesity-induced steatosis and hepatic lipogenic gene expression. Collectively, our findings suggest that IL-1β signaling upregulates hepatic lipogenesis in obesity, and is essential for the induction of pathogenic hepatic steatosis in obese mice.  相似文献   

12.
Fatty liver is associated with obesity and breast cancer. We used an obese rat model of mammary cancer to examine whether hepatosteatosis is modifiable by diet and associated with altered expression of hepatic lipogenic enzyme genes, thyroid hormone system genes and cholesterol metabolism-related genes. Beginning at the age of 5 weeks, lean and obese female Zucker rats were fed high-isoflavone soy protein- or casein (control protein)-containing diets. Rats were euthanized at 200 days of age [corresponding to 147 days after administration of carcinogen to induce mammary tumors; (Hakkak et al. in, Oncol Lett 2:29–36, 2011)]. Obese rats had a greater degree of liver steatosis than lean rats. Obese casein-fed rats had marked steatosis with small foci of mononuclear infiltration, whereas obese soy protein-fed rats had a significantly lower steatosis index. Comparisons between lean and obese casein-fed rats showed that obesity was associated with significant reductions in hepatic mRNA abundance for Glucose 6-Phosphate Dehydrogenase (G6PD), 6-Phosphogluconate Dehydrogenase (6PGD), Thyroid Receptor Alpha 1 (TRα1), Thyroid Receptor Beta 1 (TRβ1) and Iodothyronine Deiodinase 1 (DIO1). The soy protein diet was associated with increased expression of Fatty Acid Synthase (FASN), Malic Enzyme 1 (ME1), 6PGD, Sterol Regulatory Element Binding Protein-1c (SREBP-1c) and SREBP-2 genes in the livers of obese but not lean rats. Western blot analysis showed a significant induction of ME1 protein expression in the livers of obese, soy protein-fed rats, which paralleled the increased serum insulin level in this group. Long-term soy protein consumption can counter hepatic steatosis while coincidently promoting hepatic lipogenic gene expression, the latter likely a consequence of elevated serum insulin. We suggest that elevations in serum insulin, hepatic lipogenesis and cholesterol synthesis all contributed to the increased tumorigenesis previously observed for the obese, soy protein-fed rats.  相似文献   

13.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is considered to be one of the master regulators of adipocyte differentiation. PPARgamma2 is abundantly expressed in mature adipocytes and is elevated in the livers of animals that develop fatty livers. The aim of this study was to determine the ability of PPARgamma2 to induce lipid accumulation in hepatocytes and to delineate molecular mechanisms driving this process. The hepatic cell line AML-12 was used to generate a cell line stably expressing PPARgamma2. Oil Red O staining revealed that PPARgamma2 induces lipid accumulation in hepatocytes. This phenotype is accompanied by a selective upregulation of several adipogenic and lipogenic genes including adipose differentiation-related protein (ADRP), adipocyte fatty acid-binding protein 4, sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), and acetyl-CoA carboxylase, genes whose expression levels are known to increase in steatotic livers of ob/ob mice. Furthermore, the PPARgamma2-regulated induction of both SREBP-1 and FAS parallels an increase in de novo triacylglycerol synthesis in hepatocytes. Triacylglycerol synthesis and lipid accumulation are further enhanced by culturing hepatocytes with troglitazone in the absence of exogenous lipids. These results correspond with an increase in the lipid droplet protein, ADRP, and the data demonstrate that ADRP functions to coat lipid droplets in hepatocytes as observed by confocal microscopy. Taken together, these observations propose a role for PPARgamma2 as an inducer of steatosis in hepatocytes and suggest that this phenomenon occurs through an induction of pathways regulating de novo lipid synthesis.  相似文献   

14.
Insulin receptor substrate (IRS)-2(-/-) mice develop diabetes because of insulin resistance in the liver and failure to undergo beta-cell hyperplasia. Here we show by DNA chip microarray analysis that expression of the sterol regulatory element-binding protein (SREBP)-1 gene, a downstream target of insulin, was paradoxically increased in 16-week-old IRS-2(-/-) mouse liver, where insulin-mediated intracellular signaling events were substantially attenuated. The expression of SREBP-1 downstream genes, such as the spot 14, ATP citrate-lyase, and fatty acid synthase genes, was also increased. Increased liver triglyceride content in IRS-2(-/-) mice assures the physiological importance of SREBP-1 gene induction. IRS-2(-/-) mice showed leptin resistance; low dose leptin administration, enough to reduce food intake and body weight in wild-type mice, failed to do so in IRS-2(-/-) mice. Interestingly, high dose leptin administration reduced SREBP-1 expression in IRS-2(-/-) mouse liver. Thus, IRS-2 gene disruption results in leptin resistance, causing an SREBP-1 gene induction, obesity, fatty liver, and diabetes.  相似文献   

15.
As 5-lipoxygenase (5-LO) is an emerging target in obesity and insulin resistance, we have investigated whether this arachidonate pathway is also implicated in the progression of obesity-related fatty liver disease. Our results show that 5-LO activity and 5-LO-derived product levels are significantly elevated in the liver of obese ob/ob mice with respect to wild-type controls. Treatment of ob/ob mice with a selective 5-LO inhibitor exerted a remarkable protection from hepatic steatosis as revealed by decreased oil red-O staining and reduced hepatic triglyceride (TG) concentrations. In addition, 5-LO inhibition in ob/ob mice downregulated genes involved in hepatic fatty acid uptake (i.e., L-FABP and FAT/CD36) and normalized peroxisome proliferator-activated receptor alpha (PPARalpha) and acyl-CoA oxidase expression, whereas the expression of lipogenic genes [i.e., fatty acid synthase (FASN) and SREBP-1c] remained unaltered. Furthermore, 5-LO inhibition restored hepatic microsomal TG transfer protein (MTP) activity in parallel with a stimulation of hepatic VLDL-TG and apoB secretion in ob/ob mice. Consistent with these findings, 5-LO products directly inhibited MTP activity and triggered cytosolic TG accumulation in CC-1 cells, a murine hepatocyte cell line. Taken together, these findings identify a novel steatogenic role for 5-LO in the liver through mechanisms involving the regulation of hepatic MTP activity and VLDL-TG and apoB secretion.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号