首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundSevoflurane (SEVO) inactivates the aggressiveness of hepatocellular carcinoma (HCC) cells by mediating microRNAs (miRNAs). Hence, we delved into the functional role of miR-148a-3p mediated by SEVO in HCC.MethodsLiver cells (L02) and HCC cells (HCCLM3 and Huh7) were exposed to SEVO to detect cell viability in HCC. HCCLM3 and Huh7 cells were treated with restored miR-148a-3p or depleted Rho-associated protein kinase 1 (ROCK1) to elucidate their roles in HCC cells' biological characteristics. HCCLM3 and Huh7 cells were treated with SEVO, and/or vectors that changed miR-148a-3p or ROCK1 expression to identify their combined functions in HCC cell progression. Tumor xenograft in nude mice was performed to determine growth ability of tumor. The target relationship between miR-148a-3p and ROCK1 was verified.ResultsSEVO inhibited proliferation, invasion and migration and enhanced apoptosis of HCCLM3 and Huh7 cells. MiR-148a-3p up-regulation or ROCK1 down-regulation inhibited HCCLM3 and Huh7 cell progression. ROCK1 was determined to be target gene of miR-148a-3p. Down-regulating miR-148a-3p or overexpressing ROCK1 mitigated cell aggressiveness inhibition caused by SEVO.ConclusionOur study elucidates that microRNA-148a-3p enhances the effects of sevoflurane on inhibiting proliferation, invasion and migration and enhancing apoptosis of HCC cells through suppression of ROCK1.  相似文献   

2.
Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of patients with advanced liver cancer. However, acquisition of cisplatin resistance is common in patients with hepatocellular carcinoma (HCC), and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-130a levels were significantly increased in HCC patients treated with cisplatin-based chemotherapy. miR-130a levels were also higher in cisplatin-resistant Huh7 cells than in Huh7 cells. Overexpression of miR-130a contributed to cisplatin resistance in Huh7 cell, whereas knockdown of miR-130a overcame cisplatin resistance in cisplatin-resistant Huh7 cell. We further demonstrated that upregulated miR-130a directly inhibited expression of tumor suppressor gene RUNX3, which resulted in activation of Wnt/β-catenin signaling and increased drug resistance. These data suggest that miR-130a/RUNX3/Wnt signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.  相似文献   

3.
The poor prognosis of hepatocellular carcinoma (HCC) is mainly due to the development of invasion and metastasis. Recent data strongly suggests the important role of miRNAs in cancer progression, including invasion and metastasis. Here, we found miR-217 expression was much lower in highly invasive MHCC-97H HCC cells and metastatic HCC tissues. Restored miR-217 expression with miR-217 mimics inhibited invasion of MHCC-97H cells. Inversely, miR-217 inhibition enhanced the invasive ability of Huh7 and MHCC-97L cells. Mechanically, bioinformatics analysis combined with experimental analysis demonstrated E2F3 was a novel direct target of miR-217. Moreover, E2F3 protein level was positively associated with HCC metastasis and functional analysis confirmed the positive role of E2F3 in HCC cell invasion. Our findings suggest miR-217 function as a potential tumor suppressor in HCC progression and miR-217-E2F3 axis may be a novel candidate for developing rational therapeutic strategies.  相似文献   

4.
Liu Y  Hei Y  Shu Q  Dong J  Gao Y  Fu H  Zheng X  Yang G 《PloS one》2012,7(4):e35800
Valosin containing protein (VCP)/p97 plays various important roles in cells. Moreover, elevated expression of VCP in hepatocellular carcinoma (HCC) is correlated with increased incidence of recurrence. But the role of VCP in HCC progression in vitro and in vivo is unclear. And there are few reports about the regulation mechanism on the expression of VCP in HCC. In this study, it was identified that the level of VCP was frequently increased in human HCC tissues. In addition, down-regulation of VCP with siRNAs could dramatically suppress the genesis and progression of tumor in vivo. It was found that miR-129-5p directly inhibited the expression of VCP in several HCC cell lines. Meanwhile, the level of VCP in HCC tissues was negatively associated with the level of miR-129-5p. Our further investigation showed that the enhanced expression of miR-129-5p also suppressed tumor growth in vivo. Moreover, it was revealed that miR-129-5p could inhibit the degradation of IκBα and increase the apoptosis and reduce the migration of HCC cells by suppressing the expression of VCP. Our results revealed that the expression of VCP was directly regulated by miR-129-5p and this regulation played an important role in the progression of HCC.  相似文献   

5.
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.  相似文献   

6.
Recently, increasing numbers of long noncoding RNAs (lncRNAs) have been found to be aberrantly expressed in various cancers. However, the roles of lncRNAs in hepatocellular carcinoma (HCC) progression is largely unknown. In our current study, we identified that long intergenic nonprotein-coding RNA 707 (LINC00707) was remarkably elevated in HCC cells, indicating that LINC00707 was involved in HCC development. Subsequently, LINC00707 was significantly decreased in HepG2 and Huh7 cells. The in vitro functional assays demonstrated that knockdown of LINC00707 significantly reduced HCC cell proliferation, induced cell apoptosis, and blocked the cell cycle progression. In addition, HCC cell migration and invasion was also greatly inhibited by downregulation of LINC00707. Increasing evidence has indicated that lncRNAs can act as molecular sponges of microRNAs. Currently, we observed that microRNA-206 (miR-206) was dramatically inhibited in HCC cells and LINC00707 can modulate HCC development through sponging miR-206. The binding correlation between LINC00707 and miR-206 was confirmed by dual-luciferase reporter assay, RNA pull down and RNA immunoprecipitation assay in our study. Moreover, cyclin-dependent kinase 14 (CDK14) was predicted as a target of miR-206 and we found that miR-206 suppressed CDK14 levels in HCC cells. Finally, in vivo assays were used and it was proved that silence of LINC00707 can restrain HCC development through modulating miR-206 to upregulate CDK14. In conclusion, it was implied that LINC00707 can lead to HCC progression through sponging miR-206 and modulating CDK14.  相似文献   

7.
microRNA-485-5p (miR-485-5p) has been shown to act as a tumor-suppressor gene in some cancers, such as ovarian epithelial tumors and oral tongue squamous cell carcinoma. However, with regard to the anti-tumor role of miR-485-5p in hepatocellular carcinoma (HCC), evidence is unexpectedly limited. In the present study, we investigated the expression and the role of miR-485-5p in the progression of HCC. Microarray analysis revealed that miR-485-5p was downregulated and WBP2 was upregulated in HCC, which was consistent with RT-qPCR and immunohistochemistry assays in the HCC tissues we collected. A negative correlation between the expression of miR-485-5p and WBP2 was also found in HCC tissues. It was predicted and confirmed that miR-485-5p could bind to WW domain binding protein 2 (WBP2) through in silico analysis of genetic sequences and an in vitro dual-luciferase reporter gene assay. Next, gain- or loss-of-function studies were applied in the HCC cell line (Huh7) to examine the effects of miR-485-5p and WBP2 on HCC cell behavior. The effects of miR-485-5p and WBP2 on the Wnt/β-catenin signaling pathway were determined by TOP/FOP flash luciferase assays. miR-485-5p was shown to downregulate WBP2 and block the Wnt/β-catenin signaling pathway. As expected, elevated miR-485-5p levels and inhibition of WBP2 protein expression exerted inhibitory effects on HCC cell proliferation, migration and invasion and, induced apoptosis. In vivo experiments were finally conducted, which confirmed that upregulation of miR-485-5p or depletion of WBP2 attenuated tumor growth. Collectively, our results suggest miR-485-5p can downregulate WBP2 to inhibit the development of HCC by the blockade of the Wnt/β-catenin signaling, providing a novel molecular target for HCC treatment.  相似文献   

8.
Terminal differentiation induced ncRNA (TINCR), a newly identified lncRNA, has been found to be associated with different human cancers including hepatocellular carcinoma (HCC). However, little is known regarding the pathological mechanisms of TINCR in HCC progression. In this study, we confirmed that TINCR expression was upregulated in HCC tumors and cell lines, and high TINCR expression was associated with larger tumor size, advanced tumor node metastasis stage, and poor prognosis. Functionally, knockdown of TINCR facilitated apoptosis and suppressed viability, colony formation and invasion in Huh7 and Hep3B cells. Mechanically, TINCR functioned as competing endogenous RNA (ceRNA) to regulate DEAD-box helicase 5 (DDX5) expression through sponging miR-218-5p. Moreover, the miR-218-5p expression was downregulated and DDX5 expression was upregulated in HCC tumors. The silencing of miR-218-5p or ectopic expression of DDX5 abated the tumor-suppressive effect of TINCR knockdown in vitro. Furthermore, si-TINCR-induced inactivation of AKT signaling was rescued by suppression of miR-218-5p or overexpression of DDX5. Also, the silencing of TINCR resulted in tumor growth inhibition in vivo. In summary, knockdown of TINCR suppressed HCC progression presumably by inactivation of AKT signaling through targeting the miR-218-5p/DDX5 axis, suggesting a novel TINCR/miR-218-5p/DDX5 pathway and therapy target for HCC.  相似文献   

9.
Long noncoding RNA (lncRNA) differentiation antagonizing nonprotein coding RNA (DANCR) has been identified as an oncogene in several cancers. However, the biological function and role of DANCR in hepatocellular carcinoma (HCC) remain unclear. Our current study aimed to investigate the detailed mechanism of DANCR in HCC. We found that DANCR was significantly upregulated in HCC cell lines in comparison to LO2 cells. Then, we observed that knockdown of DANCR could greatly inhibit Huh7 and HepG2 cell proliferation. In addition, HCC cell apoptosis was increased by silence of DANCR and meanwhile, cell cycle progression was blocked in G1 phase. Apart from these, downregulation of DANCR repressed HCC cell migration and invasion ability obviously. As predicted by the bioinformatics analysis, microRNA-216a-5p (miR-216a-5p) could serve as a direct target of DANCR. MiR-216a-5p has been reported to be involved in many cancers. Here, the correlation between miR-216a-5p and DANCR was confirmed using dual-luciferase reporter assay and radioimmunoprecipitation assay. Subsequently, Kruppel-like factor 12 (KLF12) exerts an important role in different tumor types. KLF12 can function as a downstream target of miR-216a-5p. Finally, the in vivo experiments were used and the data proved that DANCR also strongly suppressed HCC tumor growth in vivo via targeting miR-216a-5p and KLF12. In conclusion, our study indicated that DANCR might provide a new perspective for HCC treatment.  相似文献   

10.
Dysregulation of microRNAs frequently contributes to the occurrence and progression of human diseases, including hepatocellular carcinoma (HCC). In this study, the role of miR-450b-3p in HCC was investigated. Gene Expression Omnibus database and HCC specimens were used to evaluate the expression level of miR-450b-3p and the patient's prognosis. Cell functional analyses and tumor xenograft model were used to assess the role of miR-450b-3p in HCC. Bioinformatics was used to predict the downstream target gene of miR-450b-3p, which was verified by dual-luciferase reporter assay. MiR-450b-3p was found to be downregulated in HCC cell lines and tissues, compared with nontransformed immortal hepatic cells and adjacent normal liver tissues, respectively. Lower expression of miR-450b-3p was associated with poor overall survival and disease-free survival in patients with HCC. Ectopic expression of miR-450b-3p inhibited HCC cell viability, colony formation, and cell-cycle progression in vitro, and suppressed the growth of HCC xenograft tumors in vivo. Interestingly, a negative correlation between miR-450b-3p and phosphoglycerate kinase 1 (PGK1) protein was observed among HCC specimens. Additionally, miR-450b-3p inhibited PGK1 expression and phosphorylation of protein kinase B in HCC cell lines. Further experiments confirmed that PGK1 was a direct target of miR-450b-3p. Moreover, restoration of PGK1 abrogated the inhibitory effect of miR-450b-3p on HCC proliferation and cell division. In conclusion, miR-450b-3p is downregulated in human HCC and exerts tumor suppressive effects at least in part by inhibiting PGK1.  相似文献   

11.
12.
Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1α subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1α as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC50 = 5.16 μM). The mechanism of this inhibition did not involve suppression of HIF-1α protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC50 = 4.75 μM). Exposure of Huh7 cells to 10 μΜ kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 μM) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.  相似文献   

13.
miR-101 is considered to play an important role in hepato-cellular carcinoma (HCC), but the underlying molecular mechanism remains to be elucidated. Here, we aimed to confirm whether Girdin is a target gene of miR-101 and determine the tumor suppressor of miR-101 through Girdin pathway. In our previous studies, we firstly found Girdin protein was overexpressed in HCC tissues, and it closely correlated to tumor size, T stage, TNM stage and Edmondson-Steiner stage of HCC patients. After specific small interfering RNA of Girdin was transfected into HepG2 and Huh7.5.1 cells, the proliferation and invasion ability of tumor cells were significantly inhibited. In this study, we further explored the detailed molecular mechanism of Girdin in HCC. Interestingly, we found that miR-101 significantly low-expressed in HCC tissues compared with that in matched normal tissues while Girdin had a relative higher expression, and miR-101 was inversely correlated with Girdin expression. In addition, after miR-101 transfection, the proliferation, migration and invasion abilities of HepG2 cells were weakened. Furthermore, we confirmed that Girdin is a direct target gene of miR-101. Finally we confirmed Talen-mediated Girdin knockout markedly suppressed cell proliferation, migration and invasion in HCC while down-regulation of miR-101 significantly restored the inhibitory effect. Our findings suggested that miR-101/Girdin axis could be a potential application of HCC treatment.  相似文献   

14.
BackgroundsHepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancer with high metastasis and recurrence rates. Hypoxia-induced miRNAs and HIF-1α are demonstrated to play essential roles in tumor metastasis. Matrine (C15H24N2O), an alkaloid extracted from Sophora flavescens Aiton, has been used as adjuvant therapy for liver cancer in China. The anti-metastasis effects of matrine on HCC and the underlying mechanisms remain poorly understood.PurposeWe aimed to investigate the effects of matrine on metastasis of HCC both in vitro and in vivo, and explored whether miR-199a-5p and HIF-1α are involved in the action of matrine.MethodsMTT method, colony formation, wound healing and matrigel transwell assays were performed to evaluate the effects of matrine on cell proliferation, migration and invasion. Nude mice xenograft model and immunohistochemistry (IHC) assay were employed to investigate the anti-metastatic action of matrine in vivo. Quantitative real-time PCR, western blot and dual luciferase reporter assay were conducted to determine the underlying mechanisms of matrine.ResultsMatrine exerted stronger anti-proliferative action on Bel7402 and SMMC-7721 cells under hypoxia than that in normoxia. Both matrine and miR-199a-5p exhibited significant inhibitory effects on migration, invasion and EMT in Bel7402 and SMMC-7721 cells under hypoxia. Further study showed that miR-199a-5p was downregulated in HCC cell lines, and this microRNA was identified to directly target HIF-1α, resulting in decreased HIF-1α expression. Matrine induced miR-199a-5p expression, decreased HIF-1α expression and inhibited metastasis of Bel7402 and SMMC-7721 cells, while miR-199a-5p knockdown reversed the inhibitory effects of matrine on cell migration, invasion, EMT and HIF-1α expression. In vivo, matrine showed significant anti-metastatic activity in the nude mouse xenograft model. H&E and IHC analysis indicated that lung and liver metastasis nodules were reduced, and the protein expression of HIF-1α and Vimentin were significantly decreased by i.p injection of matrine.ConclusionsMatrine exhibits significant anti-metastatic effect on HCC, which is attributed to enhanced miR-199a-5p expression and subsequently impaired HIF-1α signaling and EMT. These findings suggest that miR-199a-5p is a potential therapeutic target of HCC, and matrine may represent a promising anti-metastatic medication for HCC therapy.  相似文献   

15.
It has been reported that miR-623 is deregulated in lung adenocarcinoma and inhibits tumor growth and invasion. However, it is unclear whether miR-623 has a role in the progression of hepatocellular carcinoma (HCC). Herein, we found that miR-623 was significantly downregulated in HCC, and that its expression was related to poor clinical outcomes of patients with HCC. Upregulation of miR-623 decreased cell proliferation, viability, migration, and invasion and further promoted apoptosis in 7721, Huh7, and Bel-7402 cells. Moreover, we also observed that miR-623 regulated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), Wnt/β-catenin, and extracellular regulated protein kinases/c-Jun N-terminal kinase (ERK/JNK) signaling pathways as well as the expression level of related proteins. Further, X-ray repair cross complementing 5 (XRCC5) was a direct target for miR-623, and the suppression of PI3K/Akt, Wnt/β-catenin, and ERK/JNK signaling pathways and cell proliferation and invasion abilities caused by miR-623 in HCC cells was significantly reversed by the upregulation of XRCC5. Collectively, our data suggested that miR-623 suppressed the progression of HCC by regulating the PI3K/Akt, Wnt/β-catenin, and ERK/JNK pathways by targeting XRCC5 in HCC in vitro, indicating that miR-623 may be a target for the therapy of HCC.  相似文献   

16.
Propofol is one of the most extensively used intravenous anaesthetic agents, which has been found to improve the surgical intervention outcome of several types of cancer, including hepatocellular carcinoma (HCC). Additionally, in vitro and in vivo experiments have also indicated that propofol affects the biological behaviour of HCC. However, the underlying mechanisms of the surgical resection of HCC with propofol have not been fully understood. In the present study, we aimed to investigate the underlying mechanism of propofol inhibition of the growth and invasion of HCC cells. Our results showed that treatment with propofol suppressed the proliferation, invasion and migration of HCC in vitro. The subcutaneous xenograft tumour and orthotopic xenograft tumour experiments in nude mice showed that propofol significantly decreased tumour volumes, growth rates and the liver orthotopic xenograft tumour in vivo. Furthermore, the underlying mechanism investigations of the suppressive effects of propofol on HCC cells revealed that propofol treatment upregulated the expression levels of the candidate tumour suppressor miR-219-5p. Silencing of propofol-induced miR-219-5p using anti-miR-219-5p abrogated the inhibitory effects on the proliferation, migration and invasion of HCC cells exerted by propofol treatment. Additionally, we demonstrated that propofol reversed the epithelial-mesenchymal transition of Huh7 and SMMC7721 cells via miR-219-5p induction. The molecular mechanism behind these findings is that propofol-induced miR-219-5p inhibits HCC cell progression by targeting glypican-3 and subsequently results in the inhibition of Wnt/β-catenin signalling. Taken together, our study provides new insights into the advantages of the surgical intervention of HCC with propofol anaesthetization.  相似文献   

17.
Long noncoding RNAs (lncRNAs) have been reported to dysregulate and involve in the pathology of hepatocellular carcinoma (HCC). Nonetheless, the functional role of lncRNA T cell leukemia/lymphoma 6 (TCL6) and its underlying mechanism in HCC remain unclear. Herein, we analyzed the expression of TCL6 and elucidated its mechanistic involvement in HCC. Bioinformatics analyses indicated TCL6 was evidently downregulated in HCC tissues compared with normal controls. TCL6 was downregulated while microRNA-106a-5p (miR-106a-5p) was upregulated in HCC cell lines. Moreover, knockdown or overexpression of TCL6 significantly raised or diminished the expression level of miR-106a-5p in HCC cells, similar to the effect of miR-106a-5p on TCL6 expression. Functionally, TCL6 inhibited the proliferative, migratory, and invasive potentials of HCC cells as analyzed by cell counting kit-8, scratch wound healing, and transwell assays, respectively. Conversely, miR-106a-5p exerted an opposite effect on the proliferative, migratory, and invasive potentials of HCC. RNA immune precipitation and luciferase reporter assays revealed TCL6 directly bound to miR-106a-5p and luciferase reporter assay verified phosphatase and tensin homolog (PTEN) was a target gene of miR-106a-5p. Mechanistically, TCL6 knockdown evidently reduced PTEN expression at both messenger RNA and protein levels, and miR-106a-5p inhibitor partially rescued this reduction effect in HCC cells. Additionally, western blot assays demonstrated miR-106a-5p downregulation or TCL6 overexpression promoted the protein level of PTEN, and suppressed the phosphorylation level of AKT, the protein level of phosphatidylinositol 3-kinase (PI3K). Collectively, these results revealed TCL6 as a tumor-suppressive lncRNA regulates PI3K/AKT signaling pathway via directly binding to miR-106a-5p in HCC. This mechanism provides a theoretical basis for HCC pathogenesis and a potential therapeutic strategy for HCC treatment.  相似文献   

18.
《Genomics》2021,113(6):3512-3522
ObjectiveOur study aims to identify the impact of histone deacetylase 3 (HDAC3) and microRNA-376c-3p (miR-376c-3p) on gastric cancer (GC) by targeting wingless-type MMTV integration site family member 2b (WNT2b).MethodsLevels of miR-376c-3p, HDAC3 and WNT2b were assessed. GC cells were treated with altered HDAC3 or miR-376c-3p to evaluate their biological functions, and rescue experiment was performed to assess the effect of WNT2b on GC cells. The tumor growth in vivo was observed.ResultsHDAC3 and WNT2b were up-regulated while miR-376c-3p was reduced in GC tissues and cell lines. The inhibited HDAC3 or elevated miR-376c-3p could restrain malignant behaviors of GC cells in vitro, and also suppress the xenograft growth. WNT2b silencing reduced the effect of miR-376c-3p inhibition while WNT2b overexpression mitigated that of miR-376c-3p promotion on GC cell growth.ConclusionInhibiting HDAC3 promotes miR-376c-3p to suppress malignant phenotypes of GC cells via reducing WNT2b, thereby restricting GC development.  相似文献   

19.
Objective: Long non-coding RNAs (lncRNAs) recently have been identified as influential indicators in a variety of malignancies. The aim of the present study was to identify a functional lncRNA LINC00488 and its effects on thyroid cancer in the view of cell proliferation and apoptosis.Methods: In order to evaluate the effects of LINC00488 on the cellular process of thyroid cancer, we performed a series of in vitro experiments, including cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2′-deoxyuridine) assay, flow cytometry, transwell chamber assay, Western blot and RT-qPCR. The target gene of LINC00488 was then identified by bioinformatics analysis (DIANA and TargetScan). Finally, a series of rescue experiments was conducted to validate the effect of LINC00488 and its target genes on proliferation, migration, invasion and apoptosis of thyroid cancer.Results: Our findings revealed that LINC00488 was highly expressed in thyroid cancer cell lines (BCPAP, BHP5-16, TPC-1 and CGTH-W3) and promoted the proliferation, migration and invasion, while inhibited the apoptosis of thyroid cancer cells (BCPAP and TPC-1). The results of bioinformatics analysis and dual luciferase reporter gene assay showed that LINC00488 could directly bind to miR-376a-3p and down-regulated the expression level of miR-376a-3p. In addition, Paraoxonase-2 (PON2) was a target gene of miR-376a-3p and negatively regulated by miR-376a-3p. Rescue experiment indicated that LINC00488 might enhance PON2 expression by sponging miR-376a-3p in thyroid cancer.Conclusion: Taken together, our study revealed that lncRNA LINC00488 acted as an oncogenic gene in the progression of thyroid cancer via regulating miR-376a-3p/PON2 axis, which indicated that LINC00488-miR-376a-3p-PON2 axis could serve as novel biomarkers or potential targets for the treatment of thyroid cancer.  相似文献   

20.
Osteoarthritis (OA) is a common joint disease with high morbidity, but there is still no definitive treatment for it. Long noncoding RNAs (lncRNAs) have been confirmed to play key roles in OA progression. This work was done to investigate the roles and action mechanism of lncRNA TNFSF10 in OA. The messenger RNA levels of TNFSF10 in articular cartilage samples from patients or chondrocytes were detected by Quantitative real-time PCR assay (qRT-PCR). The effects of TNFSF10 on chondrocytes were evaluated on the basis of cell growth, apoptosis, and inflammation. Then, the interaction between TNFSF10 and miR-376-3p was explored by dual-luciferase reporter test, RNA-binding protein immunoprecipitation, and RNA pull-down assay. Finally, various cell experiments, Western blot analysis, and qRT-PCR were performed to study the interaction among TNFSF10, miR-376-3p, and fibroblast growth factor receptor 1 (FGFR1). It was found that TNFSF10 was upregulated in OA cartilages and stimulated cell proliferation, antiapoptosis, and inflammation for chondrocytes. In addition, TNFSF10 acted as a competing endogenous RNA to downregulate miR-376-3p, and the influence of TNFSF10 on chondrocytes was partly reversed by miR-376-3p. Moreover, FGFR1, as a target of miR-376-3p, had reversal functions on the outcomes mediated by miR-376-3p. The further analysis displayed that there was a negative relationship between TNFSF10 and miR-376-3p as well as miR-376-3p and FGFR1, while FGFR1 was positively related with TNFSF10. Altogether, TNFSF10 overexpression probably stimulated proliferation and inflammation, and inhibited apoptosis by regulating the miR-376-3p/FGFR1 axis, implying that its increase contributed to OA progression. Our study provided a new potential biomarker or therapeutic target-TNFSF10, which was helpful to develop an efficient approach to cure OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号