首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative real time PCR (qPCR) is commonly used to determine cell mitochondrial DNA (mtDNA) copy number. This technique involves obtaining the ratio of an unknown variable (number of copies of an mtDNA gene) to a known parameter (number of copies of a nuclear DNA gene) within a genomic DNA sample. We considered the possibility that mtDNA:nuclear DNA (nDNA) ratio determinations could vary depending on the method of genomic DNA extraction used, and that these differences could substantively impact mtDNA copy number determination via qPCR. To test this we measured mtDNA:nDNA ratios in genomic DNA samples prepared using organic solvent (phenol–chloroform–isoamyl alcohol) extraction and two different silica-based column methods, and found mtDNA:nDNA ratio estimates were not uniform. We further evaluated whether different genomic DNA preparation methods could influence outcomes of experiments that use mtDNA:nDNA ratios as endpoints, and found the method of genomic DNA extraction can indeed alter experimental outcomes. We conclude genomic DNA sample preparation can meaningfully influence mtDNA copy number determination by qPCR.  相似文献   

2.
Fragile X‐associated tremor/ataxia syndrome (FXTAS) is a late‐onset neurodegenerative disorder that appears in at least one‐third of adult carriers of a premutation (55‐200 CGG repeats) in the fragile X mental retardation 1 (FMR1) gene. Several studies have shown that mitochondrial dysfunction may play a central role in aging and also in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease as well as in FXTAS. It has been recently proposed that mtDNA copy number, measured by the number of mitochondrial genomes per nuclear genome (diploid), could be a useful biomarker of mitochondrial dysfunction. In order to elucidate the role of mtDNA variation in the pathogenesis of FXTAS, mtDNA copy number was quantified by digital droplet Polymerase chain reaction. In human brain samples, mtDNA levels were measured in the cerebellar vermis, dentate nucleus, parietal and temporal cortex, thalamus, caudate nucleus and hippocampus from a female FXTAS patient, a FMR1 premutation male carrier without FXTAS and from three male controls. The mtDNA copy number was further analyzed using this technology in dermal fibroblasts primary cultures derived from three FXTAS patients and three controls as well as in cortex and cerebellum of a CGG knock in FXTAS mice model. Finally, qPCR was carried out in human blood samples. Results indicate reduced mtDNA copy number in the specific brain region associated with disease progression in FXTAS patients, providing new insights into the role of mitochondrial dysfunction in the pathogenesis of FXTAS.  相似文献   

3.
Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as β-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a “dilution bias” when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.  相似文献   

4.
R Niu  M Yoshida  F Ling 《PloS one》2012,7(7):e40572
Activation of the Mec1/Rad53 damage checkpoint pathway influences mitochondrial DNA (mtDNA) content and point mutagenesis in Saccharomyces cerevisiae. The effects of this conserved checkpoint pathway on mitochondrial genomes in human cells remain largely unknown. Here, we report that knockdown of the human DNA helicase RRM3 enhances phosphorylation of the cell cycle arrest kinase Chk2, indicating activation of the checkpoint via the ATM/Chk2 pathway, and increases mtDNA content independently of TFAM, a regulator of mtDNA copy number. Cell-cycle arrest did not have a consistent effect on mtDNA level: knockdown of cell cycle regulators PLK1 (polo-like kinase), MCM2, or MCM3 gave rise, respectively, to decreased, increased, or almost unchanged mtDNA levels. Therefore, we concluded that the mtDNA content increase upon RRM3 knockdown is not a response to delay of cell cycle progression. Also, we observed that RRM3 knockdown increased the levels of reactive oxygen species (ROS); two ROS scavengers, N-acetyl cysteine and vitamin C, suppressed the mtDNA content increase. On the other hand, in RRM3 knockdown cells, we detected an increase in the frequency of the common 4977-bp mtDNA deletion, a major mtDNA deletion that can be induced by abnormal ROS generation, and is associated with a decline in mitochondrial genome integrity, aging, and various mtDNA-related disorders in humans. These results suggest that increase of the mitochondrial genome by TFAM-independent mtDNA replication is connected, via oxidative stress, with the ATM/Chk2 checkpoint activation in response to DNA damage, and is accompanied by generation of the common 4977-bp deletion.  相似文献   

5.
Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard extraction methods, without the need for specialised equipment or large-volume demineralisation steps.  相似文献   

6.
Despite being plagued by heavily degraded DNA in palaeontological remains, most studies addressing the state of DNA degradation have been limited to types of damage which do not pose a hindrance to Taq polymerase during PCR. Application of serial qPCR to the two fractions obtained during extraction (demineralization and protein digest) from six permafrost mammoth bones and one partially degraded modern elephant bone has enabled further insight into the changes which endogenous DNA is subjected to during diagenesis. We show here that both fractions exhibit individual qualities in terms of the prevailing type of DNA (i.e. mitochondrial versus nuclear DNA) as well as the extent of damage, and in addition observed a highly variable ratio of mitochondrial to nuclear DNA among the six mammoth samples. While there is evidence suggesting that mitochondrial DNA is better preserved than nuclear DNA in ancient permafrost samples, we find the initial DNA concentration in the bone tissue to be as relevant for the total accessible mitochondrial DNA as the extent of DNA degradation post-mortem. We also evaluate the general applicability of indirect measures of preservation such as amino-acid racemization, bone crystallinity index and thermal age to these exceptionally well-preserved samples.  相似文献   

7.
Hoechst 33342 (H342), in combination with ultraviolet (UV) irradiation, is frequently used to aid or confirm the enucleation of porcine oocytes in somatic cell nuclear transfer programs. The exposure of oocytes to H342 and UV irradiation has a deleterious effect on the development of in vitro‐fertilized porcine oocytes, with increasing exposure to UV irradiation (up to 30 sec) having more drastic effects. It has been hypothesized that this decrease in embryonic development could be due to damage to the mitochondrial DNA (mtDNA). To investigate this hypothesis, we analyzed the mitochondrial distribution and DNA copy number of in vitro‐matured porcine oocytes exposed to H342/UV and the subsequent embryonic development compared with the mitochondrial distribution and DNA copy number of in vivo‐derived oocytes and embryos. Using quantitative, real‐time polymerase chain reaction (qPCR) protocols to analyze mtDNA and confocal laser scanning microscopy with MitoTracker Deep Red to determine mitochondrial distribution, we demonstrated that the simultaneous exposure of in vitro‐matured porcine oocytes to H342 staining and UV irradiation is associated with reduced oocyte developmental competence and abnormal mitochondrial distribution in the resulting cleaved embryos. In addition, 2‐ to 4‐cell embryos derived from oocytes exposed to H342/UV showed a significant decrease in mtDNA copy number. These results should be considered when H342/UV procedure is used during nuclear transfer in recipient porcine oocytes. Mol. Reprod. Dev. 79: 651–663, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.  相似文献   

9.
10.
An efficient and effective method for quantification of small amounts of nucleic acids contained within a sample specimen would be an important diagnostic tool for determining the content of mitochondrial DNA (mtDNA) in situations where the depletion thereof may be a contributing factor to the exhibited pathology phenotype. This study compares two quantification assays for calculating the total mtDNA molecule number per nanogram of total genomic DNA isolated from human blood, through the amplification of a 613-bp region on the mtDNA molecule. In one case, the mtDNA copy number was calculated by standard competitive polymerase chain reaction (PCR) technique that involves co-amplification of target DNA with various dilutions of a nonhomologous internal competitor that has the same primer binding sites as the target sequence, and subsequent determination of an equivalence point of target and competitor concentrations. In the second method, the calculation of copy number involved extrapolation from the fluorescence versus copy number standard curve generated by real-time PCR using various dilutions of the target amplicon sequence. While the mtDNA copy number was comparable using the two methods (4.92 +/- 1.01 x 10(4) molecules/ng total genomic DNA using competitive PCR vs 4.90 +/- 0.84 x 10(4) molecules/ng total genomic DNA using real-time PCR), both inter- and intraexperimental variance were significantly lower using the real-time PCR analysis. On the basis of reproducibility, assay complexity, and overall efficiency, including the time requirement and number of PCR reactions necessary for the analysis of a single sample, we recommend the real-time PCR quantification method described here, as its versatility and effectiveness will undoubtedly be of great use in various kinds of research related to mitochondrial DNA damage- and depletion-associated disorders.  相似文献   

11.
Real-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates of Glomus intraradices sensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.  相似文献   

12.
Derived from bacterial ancestors, mitochondria have maintained their own albeit strongly reduced genome, mitochondrial DNA (mtDNA), which encodes for a small and highly specialized set of genes. MtDNA exists in tens to thousands of copies packaged in numerous nucleoprotein complexes, termed nucleoids, distributed throughout the dynamic mitochondrial network. Our understanding of the mechanisms of how cells regulate the copy number of mitochondrial genomes has been limited. Here, we summarize and discuss our recent findings that Mip1/POLG (mitochondrial DNA polymerase gamma) critically controls mtDNA copy number by operating in 2 opposing modes, synthesis and, unexpectedly, degradation of mtDNA, when yeast cells face nutrient starvation. The balance of the 2 modes of Mip1/POLG and thus mtDNA copy number dynamics depends on the integrity of macroautophagy/autophagy, which sustains continuous synthesis and maintenance of mtDNA. In autophagy-deficient cells, a combination of nucleotide insufficiency and elevated mitochondrial ROS production impairs mtDNA synthesis and drives mtDNA degradation by the 3?-5?-exonuclease activity of Mip1/POLG resulting in mitochondrial genome depletion and irreversible respiratory deficiency.

Abbrivations: mtDNA: mitochondrial DNA; mtDCN: mitochondrial DNA copy number.  相似文献   

13.
Mitochondrial DNA quantification by qPCR is used in the context of many diseases and toxicity studies but comparison of results between laboratories is challenging. Through two multigroup distributions of DNA samples from human cell lines, the MITONAUTS group anonymously compared mtDNA/nDNA quantification across nine laboratories involved in HIV research worldwide. Eight of the nine sites showed significant correlation between them (mean raw data R(2)=0.664; log(10)-transformed data R(2)=0.844). Although mtDNA/nDNA values were well correlated between sites, the inter-site variability on the absolute measurements remained high with a mean (range) coefficient of variation of 71 (37-212) %. Some variability appeared cell line-specific, probably due to chromosomal alterations or pseudogenes affecting the quantification of certain genes, while within cell line variability was likely due to differences in calibration of the standard curves. The use of two mtDNA and two single copy nDNA genes with highly specific primers to quantify each genome would help address copy number variants. Our results indicate that sample shipment must be done frozen and that absolute mtDNA/nDNA ratio values cannot readily be compared between laboratories, especially if assessing cultured cell mtDNA content. However, within laboratory and relative mtDNA/nDNA comparisons between laboratories should be reliable.  相似文献   

14.
建立一种精确定量人胚胎干细胞线粒体DNA拷贝数的方法。构建包含线粒体DNANDl和核单拷贝基β-globin基因序列的重组质粒作为标准品;收集无饲养层培养体系下人胚胎干细胞DNA样本,结合2个单独的Taqman探针实时荧光定量PCR对待测样本中线粒体NDl和核β-globin基因分别进行定量,从而对人胚胎干细胞线粒体DNA的含量进行了精确定量。结果提示,人胚胎干细胞线粒体DNA的平均拷贝数/细胞为1321±228。研究表明,该技术可对人胚胎干细胞线粒体DNA拷贝数进行准确的测定,为研究培养条件对人胚胎干细胞线粒体DNA拷贝数的影响及优化体外培养条件奠定了基础。  相似文献   

15.
As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood whether tumor-initiating cells regulate their mtDNA in a similar manner or whether mtDNA is essential for tumorigenesis. We show that human neural stem cells (hNSCs) increased their mtDNA content during differentiation in a process that was mediated by a synergistic relationship between the nuclear and mitochondrial genomes and results in increased respiratory capacity. Differentiating multipotent glioblastoma cells failed to match the expansion in mtDNA copy number, patterns of gene expression and increased respiratory capacity observed in hNSCs. Partial depletion of glioblastoma cell mtDNA rescued mtDNA replication events and enhanced cell differentiation. However, prolonged depletion resulted in impaired mtDNA replication, reduced proliferation and induced the expression of early developmental and pro-survival markers including POU class 5 homeobox 1 (OCT4) and sonic hedgehog (SHH). The transfer of glioblastoma cells depleted to varying degrees of their mtDNA content into immunocompromised mice resulted in tumors requiring significantly longer to form compared with non-depleted cells. The number of tumors formed and the time to tumor formation was relative to the degree of mtDNA depletion. The tumors derived from mtDNA depleted glioblastoma cells recovered their mtDNA copy number as part of the tumor formation process. These outcomes demonstrate the importance of mtDNA to the initiation and maintenance of tumorigenesis in glioblastoma multiforme.  相似文献   

16.
Determination of mitochondrial DNA (mtDNA) heteroplasmy for the diagnosis of patients with mitochondrial disorders is a difficult task due to the coexistence of wild-type and mutant genomes. We have developed a new method for genotyping and quantification of heteroplasmic point mutations in mtDNA based on the SNaPshot technology. We compared the data of this method with the widely used "last hot-cycle" PCR-RFLP method by studying 15 patients carrying mtDNA mutations. We showed that SNaPshot is an accurate, reproducible, and sensitive technique for the determination of heteroplasmic mtDNA mutations in different tissues from patients, and it is a promising system to be used in prenatal and postnatal diagnosis of mtDNA-associated disorders.  相似文献   

17.
18.
Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.  相似文献   

19.
Mitochondrial DNA maintenance and bioenergetics   总被引:8,自引:0,他引:8  
Oxidative phosphorylation requires assembly of the protein products of both mitochondrial and of nuclear genomes into functional respiratory complexes. Cellular respiration can be compromised when mitochondrial DNA (mtDNA) sequences are corrupted. Oxidative damage resulting from reactive oxygen species (ROS) produced during respiration is probably a major source of mitochondrial genomic instability leading to respiratory dysfunction. Here, we review mechanisms of mitochondrial ROS production, mtDNA damage and its relationship to mitochondrial dysfunction. We focus particular attention on the roles of mtDNA repair enzymes and processes by which the integrity of the mitochondrial genome is maintained and dysfunction prevented.  相似文献   

20.
The use of historical and ancient tissue samples for genetic analysis is increasing, with ever greater numbers of samples proving to contain sufficient mitochondrial and even nuclear DNA for multilocus analysis. DNA yield, however, remains highly variable and largely unpredictable based solely on sample morphology or age. Quantification of DNA from historical and degraded samples can greatly improve efficiency of screening DNA extracts prior to attempting sequencing or genotyping, but requires sequence‐specific quantitative polymerase chain reaction (qPCR) based assays to detect such minute quantities of degraded DNA. We present two qPCR assays for marine mammal DNA quantification, and results from analysis of DNA extracted from preserved soft tissues, bone, baleen, and tooth from several cetacean species. These two assays have been shown to amplify DNA from 26 marine mammal species representing 12 families of pinnipeds and cetaceans. Our results indicate that different tissues retain different ratios of mitochondrial to nuclear DNA, and may be more or less suitable for analysis of nuclear loci. Specifically, historical bone and tooth samples average 60‐fold higher ratio of mitochondrial DNA to nuclear DNA than preserved fresh soft tissue, and the ratio is almost 8000‐fold higher in baleen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号