首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Poly(1-vinylimidazole) (PVIm) with aminoethyl groups has been synthesized as a new pH-sensitive polycation to enhance cell-specific gene delivery. The resulting aminated PVIm (PVIm-NH2) was water-soluble despite deprotonation of the imidazole groups at physiological pH, as determined by acid-base titration and solution turbidity measurement. Hemolysis assay showed that PVIm-NH2 enhanced membrane disruptive ability at endosomal pH, owing to the protonation of the imidazole groups with a pKa value around 6.0. Agarose gel retardation assay proved that the introduced aminoethyl groups worked as anchor groups to retain DNA. Furthermore, the ternary complex of DNA, PVIm-NH2, and a poly(L-lysine) conjugated with lactose molecules, PLL-Lac, at pH 7.4 dissociated the PLL-Lac polycation by protonation of the imidazole groups of PVIm-NH2 at pH 6.0. The resulting PVIm-NH2/DNA binary complexes easily released DNA, as compared with the PLL-Lac/PVIm-NH2/DNA ternary complex, which was examined by competitive exchange with dextran sulfate. By using PVIm-NH2 as a pH-sensitive DNA carrier, as well as PLL-Lac as a cell-targeting DNA carrier, the resulting ternary complex specifically mediated the gene expression, which depended on the protonation of the imidazole groups, on human hepatoma HepG2 cells with asialoglycoprotein receptors. These results suggest that the cell-specific gene delivery mediated by PLL-Lac was enhanced by PVIm-NH2 as a new pH-sensitive polycation.  相似文献   

2.
The sterically polymer-based liposomal complexes (SPLexes) were formed by cationic polymeric liposomes and pH-sensitive diblock copolymer were studied for their capabilities in improving the stability with high efficiency of siRNA delivery. The SPLexes were formed a dual-shelled structure and uniform size distribution. The PEGylated outer shell could mitigate the phagocytosis and reduce the cytotoxicity. Moreover, the folated SPLexes improved 42.9× accumulation in vitro and 1.7× tumor uptake in vivo in contrast with nonfolated SPLexes. The protonated copolymer at low pH would improve the siRNA released into cytoplasm following SPLexes fusion with the endo/lysosome membrane and inhibited the protein expression to 75.6 ± 4.5% efficiently. Results of this study significantly contribute to efforts to develop lipoplexes based siRNA delivery systems.  相似文献   

3.
Small interfering RNA (siRNA) is a promising new therapeutic modality that can specifically silence disease-related genes. The main challenge for successful clinical development of therapeutic siRNA is the lack of efficient delivery systems. In this study, we have designed and synthesized a small library of novel multifunctional siRNA carriers, polymerizable surfactants with pH-sensitive amphiphilicity based on the hypothesis that pH-sensitive amphiphilicity and environmentally sensitive siRNA release can result in efficient siRNA delivery. The polymerizable surfactants comprise a protonatable amino head group, two cysteine residues, and two lipophilic tails. The surfactants demonstrated pH-sensitive amphiphilic hemolytic activity or cell membrane disruption with rat red blood cells. Most of the surfactants resulted in low hemolysis at pH 7.4 and high hemolysis at reduced pH (6.5 and 5.4). The pH-sensitive cell membrane disruption can facilitate endosomal-lysosomal escape of siRNA delivery systems at the endosomal-lysosomal pH. The surfactants formed compact nanoparticles (160-260 nm) with siRNA at N/P ratios of 8 and 10 via charge complexation with the amino head group, lipophilic condensation, and autoxidative polymerization of dithiols. The siRNA complexes with the surfactants demonstrated low cytotoxicity. The cellular siRNA delivery efficiency and RNAi activity of the surfactants correlated well with their pH-sensitive amphiphilic cell membrane disruption. The surfactants mediated 40-88% silencing of luciferase expression with 100 nM siRNA and 35-75% with 20 nM siRNA in U87-luc cells. Some of the surfactants resulted in similar or higher gene silencing efficiency than TransFast. EHCO with no hemolytic activity at pH 7.4 and 6.5 and high hemolytic activity at pH 5.4 resulted in the best siRNA delivery efficiency. The polymerizable surfactants with pH-sensitive amphiphilicity are promising for efficient siRNA delivery.  相似文献   

4.
Optimising non-viral vectors for neuronal siRNA delivery presents a significant challenge. Here, we investigate a co-formulation, consisting of two amphiphilic cyclodextrins (CDs), one cationic and the other PEGylated, which were blended together for siRNA delivery to a neuronal cell culture model. Co-formulated CD-siRNA complexes were characterised in terms of size, charge and morphology. Stability in salt and serum was also examined. Uptake was determined by flow cytometry and toxicity was measured by MTT assay. Knockdown of a luciferase reporter gene was used as a measure of gene silencing efficiency. Incorporation of a PEGylated CD in the formulation had significant effects on the physical and biological properties of CD.siRNA complexes. Co-formulated complexes exhibited a lower surface charge and greater stability in a high salt environment. However, the inclusion of the PEGylated CD also dramatically reduced gene silencing efficiency due to its effects on neuronal uptake. The co-formulation strategy for cationic and PEGylated CDs improved the stability of the CD.siRNA delivery systems, although knockdown efficiency was impaired. Future work will focus on the addition of targeting ligands to the co-formulated complexes to restore transfection capabilities.  相似文献   

5.
The purpose of this research was to describe the application of lyophilization in the delivery of siRNA using cationic lipids by addressing the long-term formulation/stability issues associated with cationic lipids and to understand the mechanism of lyoprotection. siRNA liposomes complexes were formed in different potential cyro/lyoprotectants and subjected to either lyophilization or freeze thaw cycles. siRNA, liposomes and/or lipoplexes were tested for activity, SYBR Green I binding, cellular uptake and particle size. The lipoplexes when lyophilized in the presence of sugars as lyoprotectants could be lyophilized and reconstituted without loss of transfection efficacy but in ionic solutions they lost 65–75% of their functionality. The mechanism of this loss of activity was further investigated. The lyophilization process did not alter siRNA’s intrinsic biological activity as was evident by the ability of lyophilized siRNA to retain functionality and SYBR green I binding ability. While the lipoplex size dramatically increased (∼50–70 times) after lyophilization in the absence of non-ionic lyoprotectants. This increase in size correlated to the decrease in cellular accumulation of siRNA and a decrease in activity. In conclusion, siRNAs can be applied in cationic lipid lyophilized formulations and these complexes represent a potential method of increasing the stability of pre-formed complex.  相似文献   

6.
A novel family of amphiphilic temperature- and pH-sensitive poly(organophosphazenes) with varying ratios of ethylene oxide, alkyl chains and free acid units was synthesized by living cationic polymerization. Depending on their composition, these poly(organophosphazenes) exhibited lower critical solution temperatures ranging from 32 to 44 degrees C, which were pH-dependent for copolymers bearing carboxylic acid groups. The alkylated copolymers were then anchored into phospholipid bilayers to obtain stimuli-responsive liposomes that released their content upon a change in temperature or pH. Such polymer/vesicle complexes could find practical applications for site-specific and intracellular drug delivery.  相似文献   

7.
Efficient gene transfer by histidylated polylysine/pDNA complexes.   总被引:10,自引:0,他引:10  
Plasmid/polylysine complexes, which are used to transfect mammalian cells, increase the uptake of DNA, but plasmid molecules are sequestered into vesicles where they cannot escape to reach the nuclear machinery. However, the transfection efficiency increases when membrane-disrupting reagents such as chloroquine or fusogenic peptides, are used to disrupt endosomal membranes and to favor the delivery of plasmid into the cytosol. We designed a cationic polymer that forms complexes with a plasmid DNA (pDNA) and mediates the transfection of various cell lines in the absence of chloroquine or fusogenic peptides. This polymer is a polylysine (average degree of polymerization of 190) partially substituted with histidyl residues which become cationic upon protonation of the imidazole groups at pH below 6.0. The transfection efficiency was optimal with a polylysine having 38 +/- 5% of the epsilon-amino groups substituted with histidyl residues; it was not significantly impaired in the presence of serum in the culture medium. The transfection was drastically inhibited in the presence of bafilomycin A1, indicating that the protonation of the imidazole groups in the endosome lumen might favor the delivery of pDNA into the cytosol.  相似文献   

8.
Despite great potential for disease treatment, small interfering RNA (siRNA) development has been hampered due to its poor stability and the lack of efficient delivery method. To overcome the sensitivity, new generations of chemically modified oligonucleotides have been developed such as the locked nucleic acid (LNA). LNA substitution in an siRNA sequence (siLNA) is supposed to increase its stability and its affinity for its complementary sequence. The purpose of this study was to evaluate the potential benefit of an anti-GFP siLNA using the biophysical delivery method electropermeabilization. We used two types of electrical conditions: electrochemotherapy (ECT), a condition for efficient transfer of small molecules in clinics, and electrogenotherapy (EGT), a condition for efficient transfer of macromolecules. We first confirmed that siLNA was indeed more stable in mouse serum than unmodified siRNA. After determining the ECT and EGT optimal electrical parameters for a human colorectal carcinoma cell line (HCT-116) expressing eGFP, we showed that modifications of siRNA do not interfere with electrotransfer efficiency. However, despite its higher stability and its high electrotransfer efficacy, siLNA was less efficient for eGFP silencing compared to the electrotransferred, unmodified siRNA regardless of the electrical conditions used. Our study highlighted the care that is needed when designing chemically modified oligonucleotides.  相似文献   

9.
This communication presents the pH-dependent chelation of Zn(2+) ions with the imidazole groups of poly(1-vinylimidazole) (PVIm) and DNA polyion complex formation with the zinc-chelated PVIm (PVIm-Zn) via chelated Zn(2+) ions. The resulting PVIm-Zn/DNA complexes exhibit no significant cytotoxicity and show outstanding gene expression.  相似文献   

10.
A series of cobalt(III) mixed ligand complexes of type [Co(en)2L]+3, where L is bipyridine, 1,10-phenanthroline, imidazole, methylimidazole, ethyleimidazole, dimethylimidazole, urea, thiourea, acetamide, thioacetamide, semicarbazide, thiosemicarbazide, or pyrazole, have been isolated and characterized. The structural elucidation of these complexes has been explored by using absorption, infrared, and 1H NMR nuclear magnetic resonance spectral methods. The infrared spectral data of all these complexes exhibit a band at 1450/cm and 1560-1590/cm, which correspond to C=C and C=N, a band at 575/cm for Co-N (en), and a band at 480/cm for Co-L (ligand). All these complexes were found to be potent antimicrobial agents. The antibacterial activity was studied in detail in terms of zone inhibition, minimum bactericidal, and time period of lethal action. Among all, complexes bipyridine, 1,10-phenanthroline, dimethylimidazole, and pyrazole, possess the highest antibacterial activity. Antifungal activity was done by disc-diffusion assay and 50% inhibitory concentrations that possess high antifungal activity.  相似文献   

11.
Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand, displayed high DNA binding efficiency and pH-sensitive release.  相似文献   

12.
Sequence-specific gene silencing by small interfering RNA (siRNA) is an intense area of focus in the development of novel therapeutic agents. Currently, there are two major hurdles to achieving clinically effective siRNA-based therapeutics: establishment of an efficient delivery system that transfers the siRNA to the correct tissue(s); and the reduction of unintended immunotoxicity associated with unmodified siRNA. We have developed a novel liver-specific delivery system of apolipoprotein A-I-decorated cationic lipids (DTC-Apo). Here, we show that intravenous injection of an unmodified hepatitis B virus (HBV)-specific siRNA encapsulated in DTC-Apo activates the innate immune response in mice. However, 2′-O-methyl (2′-OMe) modification of siRNA sense-strand uridine or uridine/adenosine residues efficiently abrogated the immunostimulatory properties of the siRNA and also silenced viral replication. In contrast, pyrimidine modification by 2′-OMe or 2′-fluoro (2’-F) substitution failed to circumvent liposome-induced immune recognition. Our findings provide useful information for the design of chemically-modified siRNAs for in vivo applications.  相似文献   

13.
In this work, we design and investigate the complex formation of highly uniform monomolecular siRNA complexes utilizing block copolymers consisting of a cationic peptide moiety covalently bound to a poly(ethylene glycol) (PEG) moiety. The aim of the study was to design a shielded siRNA construct containing a single siRNA molecule to achieve a sterically stabilized complex with enhanced diffusive properties in macromolecular networks. Using a 14 lysine-PEG (K14-PEG) linear diblock copolymer, formation of monomolecular siRNA complexes with a stoichiometric 1:3 grafting density of siRNA to PEG is realized. Alternatively, similar PEGylated monomolecular siRNA particles are achieved through complexation with a graft copolymer consisting of six cationic peptide side chains bound to a PEG backbone. The hydrodynamic radii of the resulting complexes as measured by fluorescence correlation spectroscopy (FCS) were found to be in good agreement with theoretical predictions using polymer brush scaling theory of a PEG decorated rodlike molecule. It is furthermore demonstrated that the PEG coating of the siRNA-PEG complexes can be rendered biodegradable through the use of a pH-sensitive hydrazone or a reducible disulfide bond linker between the K14 and the PEG blocks. To model transport under in vivo conditions, diffusion of these PEGylated siRNA complexes is studied in various charged and uncharged matrix materials. In PEG solutions, the diffusion coefficient of the siRNA complex is observed to decrease with increasing polymer concentration, in agreement with theory of probe diffusion in semidilute solutions. In charged networks, the behavior is considerably more complex. FCS measurements in fibrin gels indicate complete dissociation of the diblock copolymer from the complex, while transport in collagen solutions results in particle aggregation.  相似文献   

14.
The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine™ RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications.  相似文献   

15.

Background

Small interfering RNA (siRNA) has been recognized as a new therapeutic drug to treat various diseases by inhibition of oncogene or viral gene expression. Because hyaluronic acid (HA) has been described as a biocompatible biomaterial, we tested the nanoparticles formed by electrostatic complexation of negatively‐charged HA and cationic poly L ‐arginine (PLR) for siRNA delivery systems.

Methods

Different electrostatic complexes of HA and PLR (HPs) were formulated: HP101 with 50% (w/w) HA and HP110 with 9% (w/w) HA.

Results

Gel retardation assays showed that HP101 and HP110 could form complexes with siRNAs. The diameters of these complexes were less than 200 nm. Cellular delivery efficiency of siRNAs by HPs depended on cell surface CD44 density. The HP‐mediated delivery of siRNAs was highest in WM266.4 cells followed by B16F10 cells and COS‐7 cells, in parallel with CD44 surface densities of these cell lines. TC50 values (i.e. the HP concentrations at which 50% of cells were viable after treatment) were used as indicators of cytotoxicity. HP101 showed TC50 values that were 2‐fold and 23‐fold higher than those of HP110 and PLR, respectively. After delivery into cells, siRNA exerted target‐specific RNA interference effects on mRNA and protein levels. Three days after treatment of red fluorescent protein (RFP)‐expressing B16F10 cells with RFP‐specific siRNA complexed to HP101, cellular fluorescence signals were reduced. Intratumoral administration of RFP‐specific siRNA via HP101 delivery significantly reduced the expression of RFP in tumor tissues.

Conclusions

HP101 may function as a biocompatible polymeric carrier of siRNAs and have possible application to localized siRNA delivery in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, we examined the potential of cationic nanoparticle - polyethyleneimine-introduced chitosan shell/poly (methyl methacrylate) core nanoparticles (CS-PEI) for siRNA delivery. Initially, DNA delivery was performed to validate the capability of CS-PEI for gene delivery in the human cervical cancer cell line, SiHa. siRNA delivery were subsequently carried out to evaluate the silencing effect on targeted E6 and E7 oncogenes. Physicochemical properties including size, zeta potential and morphology of CS-PEI/DNA and CS-PEI/siRNA complexes, were analyzed. The surface charges and sizes of the complexes were observed at different N/P ratios. The hydrodynamic sizes of the CS-PEI/DNA and CS-PEI/siRNA were approximately 300-400 and 400-500nm, respectively. Complexes were positively charged depending on the amount of added CS-PEI. AFM images revealed the mono-dispersed and spherical shapes of the complexes. Gel retardation assay confirmed that CS-PEI nanoparticles completely formed complexes with DNA and siRNA at a N/P ratio of 1.6. For DNA transfection, CS-PEI provided the highest transfection result. Localization of siRNA delivered through CS-PEI was confirmed by differential interference contrast (DIC) confocal imaging. The silencing effect of siRNA specific to HPV 16 E6/E7 oncogene was examined at 18 and 24h post-transfection. The results demonstrated the capacity of CS-PEI to suppress the expression of HVP oncogenes.  相似文献   

17.
The efficiency of nucleic acid-based drugs is usually hampered by the fact that, following their uptake by the cell, these drugs end up in acidic organelles (i.e., endosomes/lysosomes) from which they barely escape. This work relates to the preparation and characterization of polyion complex micelles (PICM) formed by the self-assembly of three polyelectrolytes: a diblock cationic copolymer; a membranolytic, methacrylic acid copolymer; and an oligonucleotide. It is demonstrated that a synthetic membrane-active polyanion can be successfully integrated within the structure of PICM to yield well-defined, narrowly distributed micelles (30 nm) with a core/shell architecture. Besides their ability to protect the oligonucleotide against nuclease degradation, PICM partly dissociate under mildly acidic conditions, releasing chain clusters that destabilize bilayer membranes. This association/dissociation behavior illustrates the potential of these pH-sensitive PICM for the transport and efficient delivery of polyionic drugs.  相似文献   

18.
Endosomal release is an efficiency-limiting step for many nonviral gene delivery vehicles. In this work, nonviral gene delivery vehicles were modified with a membrane-lytic peptide taken from the endodomain of HIV gp41. Peptide was covalently linked to polyethylenimine (PEI) and the peptide-modified polymer was complexed with DNA. The resulting nanoparticles were shown to have similar physicochemical properties as complexes formed with unmodified PEI. The gp41-derived peptide demonstrated significant lytic activity both as free peptide and when conjugated to PEI. Significant increases in transgene expression were achieved in HeLa cells when compared to unmodified polyplexes at low polymer to DNA ratios. Additionally, peptide-modified polyplexes mediated significantly enhanced siRNA delivery compared to unmodified polyplexes. Despite increases in transgene expression and siRNA knockdown, there was no increase in internalization or binding of modified carriers as determined by flow cytometry. The hypothesis that the gp41-derived peptide increases the endosomal escape of vehicles is supported by confocal microscopy imaging of DNA distributions in transfected cells. This work demonstrates the use of a lytic peptide for improved trafficking of nonviral gene delivery vehicles.  相似文献   

19.
Efficient gene delivery is a fundamental goal of biotechnology and has numerous applications in both basic and applied science. Substrate-mediated delivery and reverse transfection enhance gene transfer by increasing the concentration of DNA in the cellular microenvironment through immobilizing a plasmid to a cell culture substrate prior to cell seeding. In this report, we examine gene delivery of plasmids that were complexed with cationic polymers (polyplexes) or lipids (lipoplexes) and subsequently immobilized to cell culture or biomaterial substrates by adsorption. Polyplexes and lipoplexes were adsorbed to either tissue culture polystyrene or serum-adsorbed tissue culture polystyrene. The quantity of DNA immobilized increased with time of exposure, and the deposition rate and final amount deposited depended upon the properties of the substrate and complex. For polyplexes, serum modification enhanced reporter gene expression up to 1500-fold relative to unmodified substrates and yielded equivalent or greater expression compared to bolus delivery. For lipoplexes, serum modification significantly increased the number of transfected cells relative to unmodified substrates yet provided similar levels of expression. Immobilized complexes transfect primary cells with improved cellular viability relative to bolus delivery. Finally, this substrate-mediated delivery approach was extended to a widely used biomaterial, poly(lactide-co-glycolide). Immobilization of DNA complexes to tissue culture polystyrene substrates can be a useful tool for enhancing gene delivery for in vitro studies. Additionally, adapting this system to biomaterials may facilitate application to fields such as tissue engineering.  相似文献   

20.
Small interfering RNA (siRNA) has great therapeutic potential for the suppression of proteins associated with disease, but delivery methods are needed for improved efficacy. Here, we investigated the properties of micellar siRNA delivery vehicles prepared with poly(ethylene glycol)-block-poly(l-lysine) (PEG-b-PLL) comprising lysine amines modified to contain amidine and thiol functionality. Lysine modification was achieved using 2-iminothiolane (2-IT) [yielding PEG-b-PLL(N2IM-IM)] or dimethyl 3,3'-dithiobispropionimidate (DTBP) [yielding PEG-b-PLL(MPA)], with modifications aimed to impart disulfide cross-linking ability without compromising cationic charge. These two lysine modification reagents resulted in vastly different chemistry contained in the reacted block copolymer, which affected micelle formation behavior and stability along with in vitro and in vivo performance. Amidines formed with 2-IT were unstable and rearranged into a noncharged ring structure lacking free thiol functionality, whereas amidines generated with DTBP were stable. Micelles formed with siRNA and PEG-b-PLL(N2IM-IM) at higher molar ratios of polymer/siRNA, while PEG-b-PLL(MPA) produced micelles only near stoichiometric molar ratios. In vitro gene silencing was highest for PEG-b-PLL(MPA)/siRNA micelles, which were also more sensitive to disruption under disulfide-reducing conditions. Blood circulation was most improved for PEG-b-PLL(N2IM-IM)/siRNA micelles, with a circulation half-life 3× longer than naked siRNA. Both micelle formulations are promising for siRNA delivery applications in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号