首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that vasoactive intestinal peptide (VIP) exerts trophic and proangiogenic activities in experimental prostate cancer in vivo. Nude mice were subcutaneously injected with Matrigel impregnated with LNCaP prostate cancer cells. Cell treatment with 100 nM VIP for 1h before xenograft resulted in increased tumor growth after 8 and, more remarkably, 15 days of injection. The same occurred with the mRNA expression of the main angiogenic factor, vascular endothelial growth factor (VEGF), as shown by real-time RT-PCR quantification. The proangiogenic activity of VIP was further established by showing increases of hemoglobin levels, Masson trichromic staining, and immunohistochemical CD34 staining in tumors excised 15 days after subcutaneous injection of VIP-treated cells as compared to control conditions. All these parameters indicate that VIP increases vessel formation. This xenograft model is a useful tool to study in vivo the effects of VIP-related peptides in tumor growth and development of blood supply as well as their therapeutical potential in prostate cancer.  相似文献   

2.
Previous studies have shown that vasoactive intestinal peptide (VIP) and its receptors (VPAC(1) and VPAC(2) receptors) are involved in promotion and growth of many human tumours including breast cancer. Here we investigated whether VIP regulates the expression of the main angiogenic factor, vascular endothelial cell growth factor (VEGF) in human oestrogen-dependent (T47D) and oestrogen-independent (MDA-MB-4687) breast cancer cells. Semiquantitative and quantitative real-time RT-PCRs were used at mRNA level whereas enzyme immunoanalysis was performed at protein level. Both cancer cell lines expressed VIP and VPAC(1) (but not VPAC(2)) receptors that were functional as shown by VIP stimulation of adenylate cyclase activity. VIP induced VEGF expression at both mRNA and protein levels following a time-dependent pattern. The responses were faster in T47D than in MDA-MB-468 cells. The observed VIP regulation of VEGF expression appears to be modulated at least by the cAMP/protein kinase A (PKA) and the phosphoinositide 3-kinase (PI3-K) signalling systems as shown by studies of adenylate cyclase stimulation and using specific kinase inhibitors such as H89 and wortmannin. These actions suggest a proangiogenic potential of VIP in breast cancer.  相似文献   

3.
Ye Y  Hou R  Chen J  Mo L  Zhang J  Huang Y  Mo Z 《Hormones et métabolisme》2012,44(4):263-267
Formononetin is a main active component of red clover plants (Trifolium pratense L.), and is considered as a phytoestrogen. Our previous studies demonstrated that formononetin caused cell cycle arrest at the G0/G1 phase by inactivating insulin-like growth factor 1(IGF1)/IGF1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in MCF-7 cells. In the present study, we investigated the molecular mechanisms involved in the effect of formononetin on prostate cancer cells. Our results suggested that higher concentrations of formononetin inhibited the proliferation of prostate cancer cells (LNCaP and PC-3), while the most striking effect was observed in LNCaP cells. We further found that formononetin inactivated extracellular signal-regulated kinase1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in a dose-dependent manner, which resulted in increased the expression levels of BCL2-associated X (Bax) mRNA and protein, and induced apoptosis in LNCaP cells. Thus, we concluded that the induced apoptosis effect of formononetin on human prostate cancer cells was related to ERK1/2 MAPK-Bax pathway. Considering that red clover plants were widely used clinically, our results provided the foundation for future development of different concentrations formononetin for treatment of prostate cancer.  相似文献   

4.
Vasoactive intestinal peptide (VIP) decreases cell proliferation through PI3K signalling and prevents tumour progression in clear renal cell carcinoma (RCC). Here we analyzed the signalling pathways that mediate such VIP effects by using human RCC A498 cells. The effects of treatment with 1 μM VIP and/or specific protein kinase inhibitors such as H89, Wortmannin and PD98059 were studied by cell adhesion assay, ELISA of VEGF165 and ROS production assays. Semiquantitative RT-PCR and western blot were performed to study p53 expression. VIP increased cell adhesion and ROS production, and decreased VEGF165 secretion through PI3K signalling. Moreover, VIP increased nuclear expression of tumour suppressor p53. VIP effects could be blocked by cell incubation with a specific p53 inhibitor, cyclin pifithrin-α hydrobromide (CPFT-αH). In conclusion, this study provides a p53-dependent mechanism by which VIP regulates cell proliferation in RCC development. It supports a potential usefulness of VIP in new therapies of RCC.  相似文献   

5.
Chronic or recurrent inflammation plays a role in the development of many types of cancer including prostate cancer. CXCL10 (interferon-gamma inducible protein-10, IP-10) is a small secretory protein of 8.7 kDa. Recently, it has been shown that normal prostate epithelial (PZ-HPV-7) cells produce lower amounts of angiogenic CXC chemokines (GRO-alpha, IL-8) and higher amounts of angiostatic chemokines (CXCL10, CXCL11) as compared to prostate cancer cells (CA-HPV-10 and PC-3). Accordingly, we studied the effects of overexpression of CXCL10 in human prostate cancer LNCaP cells. LNCaP cells were transiently transfected with CXCL10 cDNA in pIRES2-EGFP vector. CXCL10, CXCR3, PSA and G3PDH mRNA levels were determined by semi-quantitative conventional and quantitative real-time RT-PCR and fluorescence-activated cell sorting (FACS). The expression of CXCL10 was markedly enhanced in the transfected cells at mRNA and protein levels in the cells. Overexpression of CXCL10 inhibited cell proliferation of the transfected cells by 30%-40% in serum-limited medium (1% FCS in RPMI1640 medium) and decreased PSA production. CXCR3 expression was significantly induced by the overexpression of CXCL10 as determined by RT-PCR and FACS. These results indicated that CXCL10 inhibited LNCaP cell proliferation and decreased PSA production by up-regulation of CXCR3 receptor. CXCL10 may be potentially useful in the treatment of prostate cancer.  相似文献   

6.
Elevations of intracellular cAMP in human prostate cancer cells have been shown to increase invasiveness and to promote neuronal differentiation. Since neuroendocrine peptides capable of activating adenyl cyclase are present in prostatic nerves and epithelial neuroendocrine cells, we investigated normal and malignant human prostate cells for changes in intracellular cAMP in response to the prostatic peptides vasoactive intestinal peptide (VIP), calcitonin (CT), and calcitonin gene-related peptide (CGRP). Normal prostate epithelial cells and LNCaP prostate cancer cells exhibited, respectively, 6- and 30-fold increases in intracellular cAMP in response to VIP. ALVA-31 and PPC-1 prostate cancer cells demonstrated 20- to 200-fold increases in cAMP in response to CGRP, while normal epithelial cells and LNCaP cells exhibited smaller (2- to 6-fold) responses. Only DU-145 cells increased cAMP substantially in response to CT. VIP receptor mRNA was identified by Northern blot analysis only in those cells that responded to VIP. CT receptor mRNA was identified only in DU-145 cells by polymerase chain reaction and Southern blot analysis. These results suggest that VIP and possibly CGRP receptors are likely to be present in both normal and malignant prostate cells. VIP or CGRP may regulate secretion of proteases by normal or prostate cancer cells and may influence epithelial cell differentiation.  相似文献   

7.
8.
Estrogens and androgens are proposed to play a role in the pathogenesis of prostate cancer. The effective metabolites, estradiol and 5alpha-dihydrotestosterone are produced from testosterone by aromatase and 5alpha-reductase, respectively. Metabolites of vitamin D have shown to inhibit the growth of prostate cancer cells. The aim of the present study was to verify whether 25-hydroxyvitamin D(3) (25OHD(3)), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)], dexamethasone, and progesterone regulate the expression of aromatase and 5alpha-reductase in human prostate cancer cells. LNCaP and PC3 cells were treated with 25OHD(3), 1alpha,25-(OH)(2)D(3), dexamethasone, or progesterone. Aromatase and 5alpha-reductase mRNA was quantified by real-time RT-PCR and aromatase enzyme activity was measured by the [(3)H] water assay. Aromatase enzyme activity in LNCaP and PC3 cells was increased by both 10nM dexamethasone, 1-100 nM 1alpha,25-(OH)(2)D(3) and 100 nM-10 microM progesterone. The induction was enhanced when hormones were used synergistically. Real-time RT-PCR analysis showed no regulation of the expression of aromatase mRNA by any steroids tested in either LNCaP or PC3 cells. The expression of 5alpha-reductase type I mRNA was not regulated by 1alpha,25-(OH)(2)D(3) and no expression of 5alpha-reductase type II was detected in LNCaP.  相似文献   

9.
人同源盒基因NKX3.1对前列腺癌细胞的诱导凋亡作用   总被引:3,自引:0,他引:3  
构建人同源盒基因NKX3.1 cDNA真核表达载体,研究其在前列腺癌细胞PC-3、LNCaP 中的表达及对细胞的促凋亡作用.以人前列腺癌细胞LNCaP细胞中的总RNA为模板,RT-PCR扩增NKX3.1基因全长编码片段,将NKX3.1 cDNA重组到真核表达载体pcDNA3.1(+)中; 将pcDNA3.1-NKX3.1表达载体瞬时转染前列腺癌细胞PC-3和LNCaP 细胞,用RT-PCR和Western印迹检测NKX3.1 cDNA在转录水平和蛋白水平的表达;绘制细胞生长曲线,观察NKX3.1对前列腺癌细胞增殖的抑制作用;用DNA/ladder和流式细胞术检测NKX3.1对前列腺癌细胞凋亡的影响,进一步用RT PCR检测凋亡相关基因caspase3、caspase8、caspase9、Apaf1、survivin和Bcl2表达的变化.人同源盒基因NKX3.1 cDNA真核表达载体pcDNA3.1-NKX3.1经酶切及测序鉴定正确. pcDNA3.1-NKX3.1转染PC-3和LNCaP细胞后,经RT-PCR和Western印迹证明能有效表达NKX3.1.生长曲线显示,前列腺癌细胞转染NKX3.1 cDNA后细胞增殖受到抑制;前列腺癌细胞转染NKX3.1 cDNA 48 h后,DNA电泳呈现具有凋亡特征的DNA ladder;流式细胞术检测出现明显凋亡峰;RT-PCR检测凋亡相关基因.结果显示,caspase3、caspase8、caspase9基因表达明显增加,Bcl2基因表达明显减少.本研究成功构建了真核表达载体pcDNA3.1 NKX3.1, 转染PC3和LNCaP细胞后能有效表达,并对细胞具有诱导凋亡作用  相似文献   

10.
This study aimed to examine the roles of reactive oxygen species (ROS) in cisplatin treatment of human prostate cancer cells; hormone-sensitive LNCaP and hormone-refractory PC3 and DU145 cells. Intracellular levels of ROS and H(2)O(2) were measured and visualized using specific fluorescent probes. NADPH oxidase (NOX) activity was detected by lucigenin chemiluminescence assay. Expression levels of NOX isoforms were determined by semi-quantitative RT-PCR. Cisplatin treatment increased the intracellular levels of ROS and H(2)O(2) in three prostate cancer cell lines. The increase was transient and robust in hormone-sensitive LNCaP cells compared with hormone-refractory PC3 and DU145 cells. Consistent with these findings, the NOX activity induced by cisplatin was higher in LNCaP cells than in PC3 and DU145 cells. Expression pattern of NOX isoforms varied among three cell lines and the NOX activity was independent of NOX expression. Taken together, we have shown that cisplatin induces production of ROS and H(2)O(2) via NOX activation in human prostate cancer cell lines, which is most prominent in hormone-sensitive LNCaP cells.  相似文献   

11.
Bone metastases from prostate cancer cause abnormal new bone formation, however, the factors involved and the pathways leading to the response are incompletely defined. We investigated the mechanisms of osteoblast stimulatory effects of LNCaP prostate carcinoma cell conditioned media (CM). MC3T3-E1 osteoblastic cells were cultured with CM from confluent LNCaP cells. LNCaP CM stimulated MAP kinase, cell proliferation (3H-thymidine incorporation), and protein synthesis (14C-proline incorporation) in the MC3T3-E1 cells. The increases in cell proliferation and protein synthesis were prevented by inhibition of the MAP kinase pathway. IGF-I mimicked the effects of the CM on the MC3T3-E1 cells and inhibition of IGF-I action decreased the LNCaP CM stimulation of 3H-thymidine and 14C-proline incorporation and MAP kinase activity. The findings indicate that IGF-I is an important factor for the stimulatory effects of LNCaP cell CM on cell proliferation and protein synthesis in osteoblastic cells, and that MAP kinase is a component of the signaling pathway for these effects.  相似文献   

12.
13.
Histone deacetylase inhibitors (HDACi) represent a promising class of epigenetic agents with anticancer properties. Here, we report that (S)-2, a novel hydroxamate-based HDACi, shown previously to be effective against acute myeloid leukemia cells, was also a potent inducer of apoptosis/differentiation in human prostate LNCaP and PC3 cancer cells. In LNCaP cells (S)-2 was capable of triggering H3/H4 histone acetylation, H2AX phosphorylation as a marker of DNA damage and producing G0/G1 cell cycle arrest. Consistently, (S)-2 led to enhanced expression of both the protein and mRNA p21 levels in LNCaP cells but, contrary to SAHA, not in normal non-tumorigenic prostate PNT1A cells. Mechanistic studies demonstrated that (S)-2-induced apoptosis in LNCaP cells developed through the cleavage of pro-caspase 9 and 3 and of poly(ADP-ribose)-polymerase accompanied by the dose-dependent loss of mitochondrial membrane potential. Indeed, the addition of the pan-caspase inhibitor Z-VAD-fmk greatly reduced drug-mediated apoptosis while the antioxidant N-acetyl-cysteine was virtually ineffective. Importantly, preliminary data with nude mice xenografted with LNCaP cells showed that (S)-2 prompted a decrease in the tumor volume and an increase in H2AX phosphorylation within the cancer cells. Moreover, the highly metastatic prostate cancer PC3 cells were also sensitive to (S)-2 that: i) induced growth arrest and moderate apoptosis; ii) steered cells towards differentiation and neutral lipid accumulation; iii) reduced cell invasiveness potential by decreasing the amount of MMP-9 activity and up-regulating TIMP-1 expression; and iv) inhibited cell motility and migration through the Matrigel. Overall, (S)-2 has proven to be a powerful HDACi capable of inducing growth arrest, cell death and/or differentiation of LNCaP and PC3 prostate cancer cells and, due to its low toxicity and efficacy in vivo, might also be of clinical interest to support conventional prostate cancer therapy.  相似文献   

14.
A cell line that we designed, AILNCaP, proliferated in androgen-depleted medium after emerging from long-term androgen-depleted cultures of an androgen-sensitive prostate cancer cell line, LNCaP. Using this cell line as a model of progression to androgen independence, we demonstrated that the activity of the mammalian target of rapamycin/p70 S6 kinase transduction pathway is down-regulated after androgen depletion in LNCaP, whereas its activation is related to transition of this cell line to androgen-independent proliferation. Kinase activity of protein kinase Czeta is regulated by androgen stimulation in LNCaP cells, whereas it is activated constitutively in AILNCaP cells under androgen-depleted conditions. Treatment with a protein kinase Czeta pseudosubstrate inhibitor reduced p70 S6 kinase activity and cell proliferation in both cell lines. We identified that both protein kinase Czeta and p70 S6 kinase were associated in LNCaP cells and this association was enhanced by the androgen stimulation. We examined the expression of phospho-protein kinase Czeta and phospho-p70 S6 kinase in hormone-naive prostate cancer specimens and found that the expression of both kinases was correlated with each other in those specimens. Significant correlation was observed between the expression of both kinases and Ki67 expression. Most of the prostate cancer cells that survived after prior hormonal treatment also expressed both kinases. This is the first report that shows the significance of this pathway for both androgen-dependent and -independent cell proliferation in prostate cancer. Our data suggest that protein kinase Czeta/mammalian target of rapamycin/S6 kinase pathway plays an important role for the transition of androgen-dependent to androgen-independent prostate cancer cells.  相似文献   

15.
目的:观察前列腺癌组织及不同前列腺癌细胞系中miR-182的表达,并探讨下调其表达对前列腺癌细胞增殖和凋亡的影响及机制。方法:采用实时荧光定量PCR(q RT-PCR)检测30例前列腺癌组织和30例相应的癌旁组织以及前列腺正常上皮RWPE-1细胞、前列腺癌PC-3、LNCa P和DU145细胞中miR-182的表达,进一步采用Lipfectamine 2000脂质体转染miRNA-182 inhibitor和阴性对照miRNA于PC-3细胞后,通过噻唑蓝(MTT)比色法检测细胞增殖情况,流式细胞术检测细胞凋亡率,免疫印迹(Western blot)法检测转录因子FOXO1、血管内皮生长因子(VEGF)和抑癌基因p53蛋白的表达。结果:miR-182在前列腺癌组织中的表达明显高于癌旁组织(P0.05);miR-182在前列腺癌细胞系PC-3、LNCa P和DU145中的表达均高于前列腺正常上皮细胞RWPE-1(P0.05),其中PC-3细胞中miR-182表达水平最高。转染miRNA-182 inhibitor至PC-3细胞成功下调miR-182表达后,细胞的增殖能力明显受到抑制,细胞凋亡能力明显增强,FOXO1表达水平显著升高,VEGF和p53的表达明显降低,差异均具有统计学意义(P0.05)。结论:miR-182在前列腺癌组织及细胞中呈高表达,下调miR-182的表达可能通过增加FOXO1的表达并减少VEGF和p53的表达,抑制前列腺癌细胞增殖并诱导细胞凋亡。  相似文献   

16.
17.
On the basis of increasing roles for HDM2 oncoprotein in cancer growth and progression, we speculated that HDM2 might play a major role in hypoxia-induced metastatic process. For verification of this hypothesis, wild-type LNCaP prostate cancer cells and HDM2 transfected LNCaP-MST (HDM2 stably transfected) cells were studied. The data obtained from our experiments revealed that the HDM2 transfected LNCaP-MST cells possessed an ability to multiply rapidly and show distinct morphological features compared to non-transfected LNCaP cells. During exposures to hypoxia HDM2 expression in the LNCaP and LNCaP-MST cells was significantly higher compared to the normoxic levels. The LNCaP-MST cells also expressed higher levels of HIF-1α (hypoxia-inducible factor-1α) and p-STAT3 even under the normoxic conditions compared to the non-transfected cells. The HIF-1α and p-STAT3 expressions were increased several fold when the cells were subjected to hypoxic conditions. The HIF-1α and p-STAT3 protein expressions observed in HDM2 transfected LNCaP-MST cells were 20 and 15 folds higher, respectively, compared to the non-transfected wild-type LNCaP cells. These results demonstrate that HDM2 may have an important regulatory role in mediating the HIF-1α and p-STAT3 protein expression during both normoxic and hypoxic conditions. Furthermore, the vascular endothelial growth factor (VEGF) expression that is typically regulated by HIF-1α and p-STAT3 was also increased significantly by 136% (P < 0.01) after HDM2 transfection. The overall results point towards a novel ability of HDM2 in regulating HIF-1α and p-STAT3 levels even in normoxic conditions that eventually lead to an up-regulation of VEGF expression.  相似文献   

18.
19.
Prostate cancer is the most commonly diagnosed neoplasm in men. LNCaP cells continue to possess many of the molecular characteristics of in situ prostate cancer. These cells lack ras mutations, and mitogen-activated protein kinase (MAPK) is not extensively phosphorylated in these cells. To determine the effects of ras/raf/MAPK pathway activation in these cells, we transfected LNCaP cells with an activatable form of c-raf-1(deltaRaf-1:ER). Activation of deltaRaf-1:ER, with resultant MAPK activation, reduced plating efficiency and soft agarose cloning efficiency 30-fold in LNCaP cells. Cell cycle distribution showed an accumulation of cells in G1 and was associated with the induction of CDK inhibitor p21WAF1/CIP1 at the protein and mRNA levels. p21WAF1/CIP1 mRNA stability was increased after deltaRaf-1:ER activation. In addition, activated deltaRaf-1:ER induced the senescence associated-beta-galactosidase in LNCaP cells. These data demonstrate that raf activation can activate growth inhibitory pathways leading to growth suppression in prostate carcinoma cells and also suggest that raf/MEK/MAPK pathway activation, rather than inhibition, may be a therapeutic target for some human prostate cancer cells.  相似文献   

20.
The expression of mRNA for GHRH and splice variants (SVs) of GHRH receptors in LNCaP, MDA-PCa-2b and PC-3 human prostate cancers grown in nude mice was investigated by RT-PCR. The expression of mRNA for GHRH was detected in LNCaP and PC-3, but not in MDA-PCa-2b prostatic carcinoma. RT-PCR analyses of mRNA isolated from LNCaP, MDA-PCa-2b and PC-3 cancers, revealed the presence of 720 and 566 bp products, corresponding to SV(1) and SV(2) isoforms of GHRH receptors. In PC-3 tumor membranes a radiolabeled GHRH antagonist [125I]-JV-1-42 was bound to one class of high-affinity binding sites (K(d)=1.81+/-0.47 nM) and maximum binding capacity of 332.7+/-27.8 fmol/mg membrane protein. The in vivo uptake of [125I]-JV-1-42 was observed in all xenografts of human prostate cancer, the tracer accumulation being the highest in PC-3 tumors. These results indicate that GHRH and SVs of its receptors, different from those found in the pituitary, are present in experimental human prostate cancers and may form a local mitogenic loop. The antiproliferative effects of GHRH antagonists on growth of prostate cancer could be exerted in part by an interference with this local GHRH system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号