首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
全球变化,特别是大气成分变化引起的散射辐射变化已经并将继续影响陆地生态系统的生产力与碳收支。该文综述了散射辐射的影响因子及其估算方法,分析了散射辐射对植被光能利用率(light-use efficiency,LUE)、陆地生态系统生产力及其碳收支的影响过程与控制机理,在此基础上提出了未来拟加强研究的方面:1)散射辐射对植物光合作用影响的机理及其在不同时空尺度的反应;2)散射辐射及其与其他环境因子的相互作用对植物与冠层光合作用影响的定量描述;3)散射辐射及其与其他环境因子的相互作用对土壤呼吸作用的影响过程与控制机理;4)植物对散射辐射及其与其他环境因子相互作用的适应性研究;5)散射辐射及其与其他环境因子的相互作用对陆地生态系统生产力及其碳收支的影响过程与调控对策。  相似文献   

2.
We investigate the utility of an improved isotopic method to partition the net ecosystem exchange of CO2 (F) into net photosynthesis (FA) and nonfoliar respiration (FR). Measurements of F and the carbon isotopic content in air at a high‐elevation coniferous forest (the Niwot Ridge AmeriFlux site) were used to partition F into FA and FR. Isotopically partitioned fluxes were then compared with an independent flux partitioning method that estimated gross photosynthesis (GEE) and total ecosystem respiration (TER) based on statistical regressions of night‐time F and air temperature. We compared the estimates of FA and FR with expected canopy physiological relationships with light (photosynthetically active radiation) and air temperature. Estimates of FA and GEE were dependent on light as expected, and TER, but not FR, exhibited the expected dependence on temperature. Estimates of the isotopic disequilibrium D , or the difference between the isotopic signatures of net photosynthesis (δA, mean value ?24.6‰) and ecosystem respiration (δR, mean value ?25.1‰) were generally positive (δAR). The sign of D observed here is inconsistent with many other studies. The key parameters of the improved isotopic flux partitioning method presented here are ecosystem scale mesophyll conductance (gm) and maximal vegetative stomatal conductance (gcmax). The sensitivity analyses of FA, FR, and D to gcmax indicated a critical value of gcmax (0.15 mol m?2 s?1) above which estimates of FA and FR became larger in magnitude relative to GEE and TER. The value of D decreased with increasing values of gm and gcmax, but was still positive across all values of gm and gcmax. We conclude that the characterization of canopy‐scale mesophyll and stomatal conductances are important for further progress with the isotope partitioning method, and to confirm our anomalous isotopic disequilibrium findings.  相似文献   

3.
Temporal trends in photosynthetic capacity are a critical factorin determining the seasonality and magnitude of ecosystem carbonfluxes. At a mixed deciduous forest in the south‐eastern United States (Walker Branch Watershed, Oak Ridge, TN, USA), we independently measured seasonal trends in photosynthetic capacity (using single‐leaf gas exchange techniques) and the whole‐canopycarbon flux (using the eddy covariance method). Soil respiration was also measured using chambers and an eddy covariance system beneath the canopy. These independent chamber and eddy covariance measurements, along with a biophysical model (CANOAK), areused to examine how leaf age affects the seasonal pattern of carbon uptake during the growing season. When the measured seasonality in photosynthetic capacity is representedin the CANOAK simulations, there is good agreement with the eddy covariance data on the seasonal trends in carbon uptake. Removing the temporal trends in the simulations by using the early season maximum value of photosynthetic capacity over the entire growing season over estimates the annual carbon uptake by about 300 g C m?2 year?1– halfthe total estimated annual net ecosystem exchange. Alternatively, use of the mean value of photosynthetic capacity incorrectly simulates the seasonality in carbon uptake by the forest. In addition to changes related to leaf development and senescence, photosynthetic capacitydecreased in the middle and late summer, even when leaf nitrogenwas essentially constant. When only these middle and late summer reductions were neglected in the model simulations, CANOAK still overestimated the carbon uptake by an amount comparable to 25% ofthe total annual net ecosystem exchange.  相似文献   

4.
Measurement of net ecosystem exchange was made using the eddy covariance method above three forests along a north-south climatic gradient in Sweden: Flakaliden in the north, Knottåsen in central and Asa in south Sweden. Data were obtained for 2 years at Flakaliden and Knottåsen and for one year at Asa. The net fluxes (Nep) were separated into their main components, total ecosystem respiration (Rt) and gross primary productivity (Pg). The maximum half-hourly net uptake during the heart of the growing season was highest in the southernmost site with ?0.787 mg COm?2 s?1 followed by Knottåsen with ?0.631 mg COm?2 s?1 and Flakaliden with ?0.429 mg COm?2 s?1. The maximum respiration rates during the summer were highest in Knottåsen with 0.245 mg COm?2 s?1 while it was similar at the two other sites with 0.183 mg COm?2 s?1. The annual Nep ranged between uptake of ?304 g C m?2 year?1 (Asa) and emission of 84 g C m?2 year?1 (Knottåsen). The annual Rt and Pg ranged between 793 to 1253 g C m?2 year?1 and ?875 to ?1317 g C m?2 year?1, respectively. Biomass increment measurements in the footprint area of the towers in combination with the measured net ecosystem productivity were used to estimate the changes in soil carbon and it was found that the soils were losing on average 96–125 g C m?2 year?1. The most plausible explanation for these losses was that the studied years were much warmer than normal causing larger respiratory losses. The comparison of net primary productivity and Pg showed that ca 60% of Pg was utilized for autotrophic respiration.  相似文献   

5.
Understanding how net ecosystem exchange (NEE) changes with temperature is central to the debate on climate change‐carbon cycle feedbacks, but still remains unclear. Here, we used eddy covariance measurements of NEE from 20 FLUXNET sites (203 site‐years of data) in mid‐ and high‐latitude forests to investigate the temperature response of NEE. Years were divided into two half thermal years (increasing temperature in spring and decreasing temperature in autumn) using the maximum daily mean temperature. We observed a parabolic‐like pattern of NEE in response to temperature change in both the spring and autumn half thermal years. However, at similar temperatures, NEE was considerably depressed during the decreasing temperature season as compared with the increasing temperature season, inducing a counter‐clockwise hysteresis pattern in the NEE–temperature relation at most sites. The magnitude of this hysteresis was attributable mostly (68%) to gross primary production (GPP) differences but little (8%) to ecosystem respiration (ER) differences between the two half thermal years. The main environmental factors contributing to the hysteresis responses of NEE and GPP were daily accumulated radiation. Soil water content (SWC) also contributed to the hysteresis response of GPP but only at some sites. Shorter day length, lower light intensity, lower SWC and reduced photosynthetic capacity may all have contributed to the depressed GPP and net carbon uptake during the decreasing temperature seasons. The resultant hysteresis loop is an important indicator of the existence of limiting factors. As such, the role of radiation, LAI and SWC should be considered when modeling the dynamics of carbon cycling in response to temperature change.  相似文献   

6.
Process‐based models can be classified into: (a) terrestrial biogeochemical models (TBMs), which simulate fluxes of carbon, water and nitrogen coupled within terrestrial ecosystems, and (b) dynamic global vegetation models (DGVMs), which further couple these processes interactively with changes in slow ecosystem processes depending on resource competition, establishment, growth and mortality of different vegetation types. In this study, four models – RHESSys, GOTILWA+, LPJ‐GUESS and ORCHIDEE – representing both modelling approaches were compared and evaluated against benchmarks provided by eddy‐covariance measurements of carbon and water fluxes at 15 forest sites within the EUROFLUX project. Overall, model‐measurement agreement varied greatly among sites. Both modelling approaches have somewhat different strengths, but there was no model among those tested that universally performed well on the two variables evaluated. Small biases and errors suggest that ORCHIDEE and GOTILWA+ performed better in simulating carbon fluxes while LPJ‐GUESS and RHESSys did a better job in simulating water fluxes. In general, the models can be considered as useful tools for studies of climate change impacts on carbon and water cycling in forests. However, the various sources of variation among models simulations and between models simulations and observed data described in this study place some constraints on the results and to some extent reduce their reliability. For example, at most sites in the Mediterranean region all models generally performed poorly most likely because of problems in the representation of water stress effects on both carbon uptake by photosynthesis and carbon release by heterotrophic respiration (Rh). The use of flux data as a means of assessing key processes in models of this type is an important approach to improving model performance. Our results show that the models have value but that further model development is necessary with regard to the representation of the some of the key ecosystem processes.  相似文献   

7.
散射辐射的准确估算对于评价其对陆地生态系统碳交换的影响具有重要意义.基于我国中亚热带江西千烟洲气象观测场2012年3月1日—2013年2月28日散射辐射实际观测数据对目前常用的5个散射辐射分解模型(Reindl-1、Reindl-2、Reindl-3、Boland、BRL)的模拟结果进行验证.结果表明: 在30 min尺度上,虽然5个模型在总体上都可以较好地模拟该地区的散射辐射,但模型模拟效果随着晴空指数(kt)的升高而显著降低.特别是当kt>0.75时,各模型已无法模拟该地区散射辐射.从散射辐射季节变化的模拟来看,5个模型能够很好地模拟大多数月份的散射辐射.5个模型年尺度散射辐射模拟值与观测值的相对偏差最高为7.1%(BRL),最低为0.04%(Reindl-1),平均为3.6%.在全年辐射最强、温度最高和降水偏少的夏季,5个模型的模拟值均出现了过高估计.以7月为例,散射辐射被高估14.5%~28.2%,平均高估21.2%.这可能与高kt条件下散射辐射的估算方法有关,这种不确定性需要在模型应用中做进一步深入评价.根据验证结果并考虑模拟精度和输入变量的易获取性,5个模型的模拟效果依次为BRL>Reindl-3>Reindl-2>Reindl-1>Boland.  相似文献   

8.
Observations of net ecosystem exchange (NEE) of carbon and its biophysical drivers have been collected at the AmeriFlux site in the Morgan‐Monroe State Forest (MMSF) in Indiana, USA since 1998. Thus, this is one of the few deciduous forest sites in the world, where a decadal analysis on net ecosystem productivity (NEP) trends is possible. Despite the large interannual variability in NEP, the observations show a significant increase in forest productivity over the past 10 years (by an annual increment of about 10 g C m?2 yr?1). There is evidence that this trend can be explained by longer vegetative seasons, caused by extension of the vegetative activity in the fall. Both phenological and flux observations indicate that the vegetative season extended later in the fall with an increase in length of about 3 days yr?1 for the past 10 years. However, these changes are responsible for only 50% of the total annual gain in forest productivity in the past decade. A negative trend in air and soil temperature during the winter months may explain an equivalent increase in NEP through a decrease in ecosystem respiration.  相似文献   

9.
Although boreal forests are currently sinks for atmospheric C, there is some concern that they may not remain so under hypothesized warming of the boreal climate. The ecosystem model ecosys was used to evaluate possible changes in ecosystem C exchange and accumulation under changes in atmospheric CO2 concentration (Ca) proposed in emissions scenario IS92a, and accompanying changes in air temperature and precipitation proposed by general circulation models running under IS92a. Ecosys was first tested under current climate by comparing modelled rates of C exchange and accumulation with those measured in a mixed aspen–hazelnut stand in central Saskatchewan. The model was then run with daily increments of Ca, temperature and precipitation, and differences in C exchange and accumulation between current and changing climates were evaluated. Model results indicated that over a 120‐y period, a mixed aspen–hazelnut stand currently accumulates about 14 kg C m?2. Under the hypothesized changes in climate this stand would accumulate an additional 8.5 kg C m?2, largely through higher rates of CO2 fixation and longer growing seasons under higher Ca and temperature. This additional accumulation would be entirely as aspen wood, while soil organic matter would change little. This accumulation would therefore be vulnerable to losses from fire and insects.  相似文献   

10.
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ‘extra’ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.  相似文献   

11.
The lack of information on the ways seasonal drought modifies the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and the resulting carbon balance hinders our ability to precisely predict how these ecosystems will respond as global environmental changes force them to face increasingly contrasting conditions in the future. To address this issue, seasonal variations in daily net ecosystem productivity (NEPd) and two main components of this productivity, daily total ecosystem respiration (REd) and daily gross ecosystem productivity (GEPd), were estimated over 2 years at a flux tower site in French Guiana, South America (5 °16′54″N, 52 °54′44″W). We compared seasonal variations between wet and dry periods and between dry periods of contrasting levels of intensity (i.e. mild vs. severe) during equivalent 93‐day periods. During the wet periods, the ecosystem was almost in balance with the atmosphere (storage of 9.0 g C m?2). Seasonal dry periods, regardless of their severity, are associated with higher incident radiation and lower REd combined with reduced soil respiration associated with low soil water availability. During the mild dry period, as is normally the case in this region, the amount of carbon stored in the ecosystem was 32.7 g C m?2. Severe drought conditions resulted in even lower REd, whereas the photosynthetic activity was only moderately reduced and no change in canopy structure was observed. Thus, the severe dry period was characterized by greater carbon storage (64.6 g C m?2), emphasizing that environmental conditions, such as during a severe drought, modify the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and potentially the resulting carbon balance.  相似文献   

12.
Cloud cover increases the proportion of diffuse radiation reaching the Earth's surface and affects many microclimatic factors such as temperature, vapour pressure deficit and precipitation. We compared the relative efficiencies of canopy photosynthesis to diffuse and direct photosynthetic photon flux density (PPFD) for a Norway spruce forest (25‐year‐old, leaf area index 11 m2 m−2) during two successive 7‐day periods in August. The comparison was based on the response of net ecosystem exchange (NEE) of CO2 to PPFD. NEE and stomatal conductance at the canopy level (Gcanopy) was estimated from half‐hourly eddy‐covariance measurements of CO2 and H2O fluxes. In addition, daily courses of CO2 assimilation rate (AN) and stomatal conductance (Gs) at shoot level were measured using a gas‐exchange technique applied to branches of trees. The extent of spectral changes in incident solar radiation was assessed using a spectroradiometer. We found significantly higher NEE (up to 150%) during the cloudy periods compared with the sunny periods at corresponding PPFDs. Prevailing diffuse radiation under the cloudy days resulted in a significantly lower compensation irradiance (by ca. 50% and 70%), while apparent quantum yield was slightly higher (by ca. 7%) at canopy level and significantly higher (by ca. 530%) in sun‐acclimated shoots. The main reasons for these differences appear to be (1) more favourable microclimatic conditions during cloudy periods, (2) stimulation of photochemical reactions and stomatal opening via an increase of blue/red light ratio, and (3) increased penetration of light into the canopy and thus a more equitable distribution of light between leaves. Our analyses identified the most important reason of enhanced NEE under cloudy sky conditions to be the effective penetration of diffuse radiation to lower depths of the canopy. This subsequently led to the significantly higher solar equivalent leaf area compared with the direct radiation. Most of the leaves in such dense canopy are in deep shade, with marginal or negative carbon balances during sunny days. These findings show that the energy of diffuse, compared with direct, solar radiation is used more efficiently in assimilation processes at both leaf and canopy levels.  相似文献   

13.
We developed a process‐based model of forest growth, carbon cycling and land‐cover dynamics named CARLUC (for CARbon and Land‐Use Change) to estimate the size of terrestrial carbon pools in terra firme (nonflooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study the impact of Amazonian deforestation, selective logging and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re‐growth over the period from 1970 to 1998. We calculate that the net flux to the atmosphere during this period reached a maximum of ~0.35 PgC yr?1 (1 PgC= 1 × 1015 gC) in 1990, with a cumulative release of ~7 PgC from 1970 to 1998. The net flux is higher than predicted by an earlier study ( Houghton et al., 2000 ) by a total of 1 PgC over the period 1989–1998 mainly because CARLUC predicts relatively high mature forest carbon storage compared with the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by~1 PgC from 1970 to 1998, while different assumptions about land‐cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte‐Carlo approach, is roughly 35% of the mean value (1 SD).  相似文献   

14.
2009年4-10月,通过田间试验,以传统无膜漫灌为对照,研究了膜下滴灌对我国新疆棉田生态系统净初级生产力、土壤异氧呼吸和CO2净交换通量的影响.结果表明:膜下滴灌和无膜漫灌处理下,棉田生态系统净初级生产力、土壤异氧呼吸通量和CO2净交换通量均呈先增大后减小的变化趋势.与无膜漫灌相比,膜下滴灌显著提高了棉花地上、地下生物量和净初级生产力,降低了土壤异氧呼吸通量.在整个生长季节,膜下滴灌处理的年土壤异氧呼吸通量为214 g C·m-2,低于无膜漫灌处理的317 g C·m-2;膜下滴灌处理的棉花年净初级生产力为1030 g C·m-2,显著高于无膜漫灌处理的649 g C·m-2;膜下滴灌处理比无膜漫灌处理多固定大气CO2479 g C·m-2.膜下滴灌栽培措施既提高了作物生产力,又降低了土壤CO2排放,是干旱地区一种重要的农业固碳减排措施.  相似文献   

15.
Ponderosa pine (Pinus ponderosa) forests of the southwestern United States are a mosaic of stands where undisturbed forests are carbon sinks, and stands recovering from wildfires may be sources of carbon to the atmosphere for decades after the fire. However, the relative magnitude of these sinks and sources has never been directly measured in this region, limiting our understanding of the role of fire in regional and US carbon budgets. We used the eddy covariance technique to measure the CO2 exchange of two forest sites, one burned by fire in 1996, and an unburned forest. The fire was a high‐intensity stand‐replacing burn that killed all trees. Ten years after the fire, the burned site was still a source of CO2 to the atmosphere [109±6 (SEM) g C m?2 yr?1], whereas the unburned site was a sink (?164±23 g C m?2 yr?1). The fire reduced total carbon storage and shifted ecosystem carbon allocation from the forest floor and living biomass to necromass. Annual ecosystem respiration was lower at the burned site (480±5 g C m?2 yr?1) than at the unburned site (710±54 g C m?2 yr?1), but the difference in gross primary production was even larger (372±13 g C m?2 yr?1 at the burned site and 858±37 g C m?2 yr?1at the unburned site). Water availability controlled carbon flux in the warm season at both sites, and the burned site was a source of carbon in all months, even during the summer, when wet and warm conditions favored respiration more than photosynthesis. Our study shows that carbon losses following stand‐replacing fires in ponderosa pine forests can persist for decades due to slow recovery of the gross primary production. Because fire exclusion is becoming increasingly difficult in dry western forests, a large US forest carbon sink could shift to a decadal‐scale carbon source.  相似文献   

16.
Difficulty in balancing the global carbon budget has lead to increased attention on tropical forests, which have been estimated to account for up to one third of global gross primary production. Whether tropical forests are sources, sinks, or neutral with respect to their carbon balance with the atmosphere remains unclear. To address this issue, estimates of net ecosystem exchange of carbon (NEE) were made for 3 years (1998–2000) using the eddy‐covariance technique in a tropical wet forest in Costa Rica. Measurements were made from a 42 m tower centred in an old‐growth forest. Under unstable conditions, the measurement height was at least twice the estimated zeroplane height from the ground. The canopy at the site is extremely rough; under unstable conditions the median aerodynamic roughness length ranged from 2.4 to 3.6 m. No relationship between NEE and friction velocity (u*) was found using all of the 30‐min averages. However, there was a linear relationship between the nighttime NEE and averaged u* (R2 = 0.98). The diurnal pattern of flux was similar to that found in other tropical forests, with mean daytime NEE ca. ? 18 μ mol CO2 m?2 s?1 and mean nighttime NEE 4.6 μ mol CO2 m?2 s?1. However, because ~ 80% of the nighttime data in this forest were collected during low u* conditions ( < 0.2 m s?1), nighttime NEE was likely underestimated. Using an alternative analysis, mean nighttime NEE increased to 7.05 μ mol CO2 m?2 s?1. There were interannual differences in NEE, but seasonal differences were not apparent. Irradiance accounted for ~ 51% of the variation in the daytime fluxes, with temperature and vapour pressure deficit together accounting for another ~ 20%. Light compensation points ranged from 100 to 207 μ mol PPFD m?2 s?1. No was relationship was found between 30‐min nighttime NEE and tower‐top air temperature. A weak relationship was found between hourly nighttime NEE and canopy air temperature using data averaged hourly over the entire sampling period (Q10 = 1.79, R2 = 0.17). The contribution of below‐sensor storage was fairly constant from day to day. Our data indicate that this forest was a slight carbon source in 1998 (0.05 to ?1.33 t C ha?1 yr?1), a moderate sink in 1999 (?1.53 to ?3.14 t C ha?1 yr?1), and a strong sink in 2000 (?5.97 to ?7.92 t C ha?1 yr?1). This trend is interpreted as relating to the dissipation of warm‐phase El Niño effects over the course of this study.  相似文献   

17.
森林生态系统的碳水关系是陆地生态系统碳循环和水循环相互耦合的作用过程,对研究森林碳汇、森林生态水文过程和全球变化响应有重要意义.在全球变化背景下,森林生态系统碳水关系已成为生态水文学领域中的一个热点科学问题.本文在总结国际上森林碳汇研究的基础上,概述了森林碳水关系的过程机制,包括森林水分利用效率、不同尺度上的碳水关系、尺度推绎和碳水关系的模拟研究方面的进展;总结了影响森林碳水关系的因子和研究进展,包括水分条件、CO2浓度升高、增温、氮沉降、臭氧浓度变化、辐射因子和海拔梯度因子对森林碳水关系的影响;最后对已有研究存在的问题进行了初步分析,并对未来研究内容和方向进行了展望.  相似文献   

18.
19.
《植物生态学报》2015,39(12):1156
Aims Ecosystem light use efficiency (LUE) reflects the ability of CO2 uptake and light utilization via photosynthesis, which is a key parameter in ecosystem models to evaluate ecosystem productivity. The objectives of this study were to: (1) compare the differences of LUE derived from different methods; (2) elucidate the seasonal dynamics of LUE and its regulatory factors; and (3) evaluate the maximum LUE (LUEmax) and its variability based on eddy-covariance (EC) flux.Methods Using the flux data from an EC tower during 2003-2005 at a broad-leaved Korean pine (Pinus koraiensis) mixed forest, Changbai Mountain, two types of LUE indicators were generated from: 1) the apparent quantum yield (ε) estimated with rectangular hyperbolic curve, and 2) the ecological light use efficiency (LUEeco) calculated as the ratio between gross ecosystem productivity (GEP) and photosynthetically-active radiation (Q).Important findings The seasonal variation of ε and LUEeco appeared a unimodal pattern within a year, with the variations significantly dominated by soil surface temperature and Normalized Difference Vegetation Index (NDVI). A positive correlation between GEP and LUE was found for both ε and LUEeco, with the effect of Q on LUE relatively weak. The increase in diffusion radiation appeared favorable for enhanced LUE. Generally, there was a significant positive relationship between ε and LUEeco, while ε was higher than LUEeco, especially during the mid-season. The annual maximum value of ε and LUEeco was (0.087 ± 0.003) and (0.040 ± 0.002) μmol CO2·μmol photon-1 over the three years, respectively. The interannual variability of LUEmax for ε and LUEeco was 4.17% and 4.25%, respectively, with a maximum difference of >8%, likely resulted from considerable uncertainty in model simulations. Our results indicated that the inversion and optimization of maximum LUE should be taken seriously in the application of LUE models.  相似文献   

20.
生态系统光能利用率(LUE)反映了植被通过光合作用利用光能吸收和固定大气中CO2的能力, 是表征生态系统生产力的重要指标。选取长白山温带阔叶红松(Pinus koraiensis)林生态系统为研究对象, 利用涡度相关通量观测数据, 采用直角双曲线方程获取了生态系统光合作用的表观量子效率(ε); 基于总生态系统初级生产力(GEP)与下垫面入射光合有效辐射(Q)的比值得到生态光能利用率(LUEeco)。研究表明: 在季节尺度上, εLUEeco均表现出显著的单峰变化特征, 并主要受到土壤温度和归一化植被指数(NDVI)的调控, 同时, εLUEeco都受到GEP的显著影响, 而与Q的相关性较弱或无显著相关关系, 但散射辐射的增加在一定程度上有助于提高生态系统的LUEεLUEeco存在显著的线性正相关关系, 但ε明显高于LUEeco。2003-2005年, εLUEeco每年最大值的平均值分别为(0.087 ± 0.003)和(0.040 ± 0.002) μmol CO2·μmol photon-1, 年际间变异度分别为4.17%和4.25%, 而不同年份之间最大差异均达到8%或8%以上, 从而对模型模拟结果产生明显影响。因此, 在基于光能利用率模型的模拟研究中, 最大LUE的年际变异需要在参数反演和优化中给予重要考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号