首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During pregnancy and lactation, prolactin (PRL) enhances intestinal absorption of calcium and other minerals for fetal development and milk production. Although an enhanced absorptive efficiency is believed to mainly result from the upregulation of mineral transporters in the absorptive villous cells, some other possibilities, such as PRL‐enhanced crypt cell proliferation and differentiation to increase the absorptive area, have never been ruled out. Here, we investigated cell proliferation and mRNA expression of mineral absorption‐related genes in the PRL‐exposed IEC‐6 crypt cells. As expected, the cell proliferation was not altered by PRL. Inasmuch as the mRNA expressions of villous cell markers, including dipeptidylpeptidase‐4, lactase and glucose transporter‐5, were not increased, PRL was not likely to enhance crypt cell differentiation into the absorptive villous cells. In contrast to the previous findings in villous cells, PRL was found to downregulate the expression of calbindin‐D9k, claudin‐3 and occludin in IEC‐6 crypt cells, while having no effect on transient receptor potential vanilloid family channels‐5/6, plasma membrane Ca2+‐ATPase (PMCA)‐1b and Na+/Ca2+ exchanger‐1 expression. In conclusion, IEC‐6 crypt cells did not respond to PRL by increasing proliferation or differentiation into villous cells. The present results thus supported the previous hypothesis that PRL enhanced mineral absorption predominantly by increasing transporter expression and activity in the absorptive villous cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The intestinal epithelial barrier restricts the passage of potentially toxic substances into the systemic circulation and is considered to be mostly mediated by tight junctions, though the mechanisms involved in the regulation of intestinal tight junctions are not yet fully understood. In the present study, we examined whether bacterial lipopolysaccharide (LPS) altered the barrier function of tight junction and localization of tight junctional proteins, ZO-1 and 7H6 antigen, in IEC-6 intestinal cells. Administration of LPS to the basolateral surface of IEC-6 cells disrupted the barrier function and caused the disappearance of 7H6 antigen from the cell border, whereas LPS administered to the apical surface altered neither the barrier function nor the localization of 7H6 antigen in IEC-6 cells. On the other hand, the localization of ZO-1 was not influenced by these treatments of LPS. These results suggest that the interaction of LPS with the basolateral surface of intestinal epithelial cells disrupts the barrier function and 7H6 antigen take part in the maintenance of the barrier function in IEC-6 cells. J. Cell. Physiol. 171:284–290, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
This study evaluated the use of IEC-6 cells as a model for studying lead (Pb) transport by intestinal epithelial cells (IECs) and examined potential transport mechanisms for Pb uptake and extrusion. Pb accumulation in IEC-6 cells exposed to 5 and 10 μM Pb for up to 60 min was time- and dose-dependent. Reduction of incubation temperature significantly reduced the total cellular Pb content of IEC-6 cells. Simultaneous exposure of cells to zinc (Zn) and Pb resulted in decreased total cellular Pb contents compared to total cellular Pb contents of cells exposed to Pb only. IEC-6 cells treated with ouabain (1 mM) or sodium azide (1 mM) and 5 μM Pb accumulated more Pb than cells exposed to Pb only. Cells treated withp-chloromercuribenzensulfonic acid (50 μM),p-chloromercuribenzoic acid (50 μM), or iodoacetimide (50 μM) accumulated less Pb than cells treated with Pb only. We conclude that Pb uptake by IEC-6 cells depends on the extracellular Pb concentration. Our data suggest that the mechanism of Pb uptake by IECs is complex, and that Pb transport in IEC-6 cells is time- and temperature-dependent, involves sulfhydryl groups, and is decreased by the presence of Zn. Extrusion of Pb is at least partially dependent on metabolic energy.  相似文献   

4.
Expression and synthesis of sucrase-isomaltase (SI) were studied in human jejunum and in the colon tumor cell lines Caco-2 and HT-29. Twelve monoclonal antibodies produced against the adult human intestinal enzyme were shown to recognize specifically SI by immunoprecipitation of 14C-labeled membrane proteins, analysis of enzyme activities in the immunoprecipitates, and immunoblotting. These antibodies produced markedly different patterns of immunofluorescent staining of the intestinal mucosa. Three of them were specific for the absorptive villus cells, while the other nine also stained the luminal membrane of the proliferative crypt cells, with different intensities which paralleled their ability to recognize SI in immunoblots. Sequential immunoprecipitation of SI solubilized from purified brush borders or entire jejunum with four selected antibodies demonstrated the presence of different forms of the enzyme, expressed by either villus or crypt cells. Two immunologically distinct forms of high mannose precursor (hmP1 and hmP2) were also identified in both jejunal mucosa and colon tumor cells. They were present as monomers and their immunological differences were preserved under various ionic and pH conditions. Pulse-chase studies indicated that, in Caco-2 cells, hmP1 is converted into hmP2 within 30 min of chase, and hmP2 is then processed into the complex-glycosylated precursor destined for the brush border membrane. hmP1 was immunologically related to the mature SI present in crypt cells and lacked the epitopes specific for mature SI expressed by villus cells. These results demonstrated that sucrase-isomaltase is synthesized by both crypt and villus cells, but processing of the cotranslationally glycosylated high mannose precursor is dependent on the state of differentiation of the enterocytes. This may represent a general mechanism for the regulation of expression of differentiated cell products at the post-translational level.  相似文献   

5.
Non-transformed, rat intestinal epithelial cells (IEC-6), and human intestinal colonic carcinoma cells (CACO-2) have both been used to study processes of epithelial cell differentiation. However, only CACO-2 cells have been described as spontaneously expressing phenotypic changes of differentiation in culture. We report here that when IEC-6 cells are grown in post-confluent culture, they develop structural changes similar to those seen in cells induced to differentiate by culture on Englebreth-Holm-Swarm (EHS) extracellular matrix proteins. Correlated with this morphological change is loss of nuclear localization of c-myc protein and development of cell surface alkaline phosphatase (ALP) enzymatic activity. Messenger RNAs for liver and intestinal isoforms of ALP were expressed in both pre- and post-confluent cells. Inhibition of ALP activity in post-confluent cells by levamisole indicated the expressed ALP activity to be of the liver isoform. We suggest the expression of ALP activity, which occurs concomitantly with morphological alterations in post-confluent IEC-6 cells, represents increased expression and localization to the cell surface of the liver isoform of ALP. Cultured IEC-6 cells may provide a non-transformed, in vitro alternative to CACO-2 cells for study of epithelial cell differentiation.  相似文献   

6.
7.
Intestinal epithelial cells and the mucosal immune cells in close proximity are thought to interact very closely. One well-established mechanism of this intercellular cross-talk is via the production of cytokines such as interferon gamma (IFNγ). The aim of this study was to analyze the effects of IFNγ on intestinal crypt epithelial cells. IEC-6 cells were cultured in the presence or absence of IFNγ to measure its effects on proliferation, cell cycle, apoptosis, and major histocompatibility complex (MHC) class II antigen expression. Even at very low doses (0.01 U/ml), IFNγ significantly inhibited IEC-6 cell proliferation, as demonstrated by reduced 3H-thymidine uptake, stable cell count, and complete arrest in the quiescent G0/G1 phase of the cell cycle. Incubation with supraphysiological doses of IFNγ (100–1,000 U/ml) did not induce apoptosis, as assessed by morphology and the TUNEL assay. IFNγ significantly induced de novo IEC-6 class II antigen expression. Tumor necrosis factor alpha (TNFα), which alone had no effect, synergistically enhanced this effect of IFNγ. MHC class II antigen expression was observed to be independent of cell cycle phase. Our results indicate that IFNγ alters immature crypt epithelial cell turnover and upregulates MHC class II expression. These alterations may be important in the pathogenesis of immune-mediated bowel disorders. J. Cell. Physiol. 176:120–126, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
IEC-6 cells were cultured on permeable filter inserts with separate access to the apical and basolateral sides. [3H]Putrescine uptake favored the apical side and its release (in Earle's balanced salt solution containing 0.1% bovine serum albumin) was six times greater in the apical-to-basolateral than in the basolateral-to-apical direction. Release in DMEM did not show this preference. The uptake of [3H]putrescine was stimulated approximately 1.3 times the basal level by 10 mM asparagine (ASN) or 5% dialyzed fetal bovine serum whether the [3H]putrescine was added at a concentration of 1 or 100 nM. The increased uptake was maintained for up to 6 h. When [3H]putrescine was removed after 4 h of uptake, the cells continued to release it into the medium on both sides for up to 4 h. Stimulated cells released only 50% as much as unstimulated cells. Unlabeled putrescine reduced the uptake of [3H]putrescine with an IC50 of 1.81 x 10(-6) M (r = 0.9476) and 1.02 x 10(-6) M (r = 0.9967) for unstimulated and ASN-stimulated cells, respectively. When the intracellular putrescine was reduced by difluoromethylornithine, the uptake of [3H]-putrescine was not changed, but its release was inhibited. Sodium was not required for [3H]putrescine uptake or release. Although the stimulated cells attained intracellular levels of [3H]putrescine which, if expressed as concentration based on cell volume, were up to 500 times the original extracellular concentration, a true concentration gradient could not be proven because 85% of the [3H]putrescine was probably bound to polyanions as shown by butanol extraction.  相似文献   

9.
Exposure of IEC-6 cells for 24 hr to either gastrin (50-500 ng/ml) or EGF (100-500 ng/ml) significantly stimulated (100-165%) the rate of [3H]thymidine incorporation into DNA (referred to as DNA synthesis) when compared with the corresponding basal levels. Somatostatin (10-500 ng/ml) produced no apparent change in DNA synthesis in IEC cells. On the other hand, somatostatin completely inhibited the EGF-induced rise in DNA synthesis. The gastrin-mediated stimulation in DNA synthesis was not affected by somatostatin. The rate of DNA synthesis in IEC cells in the presence of both gastrin and EGF was found to be greater (additive) than that caused by either of the peptides alone. A similar but less dramatic change in the actual number of cells (assessment of cell replication) was observed when the IEC cells were exposed for 24 hr to gastrin, EGF, and somatostatin, either alone or in combination. Whereas gastrin (250 ng/ml) and EGF (250 ng/ml) by themselves increased the number of cells significantly by 29 and 37%, respectively, together they caused a 72% stimulation, when compared with the basal levels. Somatostatin by itself caused no apparent change in IEC cell population, but it significantly inhibited the EGF- but not the gastrin-induced stimulation in IEC cell replication. It is concluded that both gastrin and EGF exert a direct proliferative effect on IEC cells, and the EGF action is regulated by somatostatin.  相似文献   

10.
Interleukin-11 (IL-11) displays epithelial cytoprotective effects during intestinal injury. Antiapoptotic effects of IL-11 have been described, yet mechanisms remain unclear. Fas/CD95 death receptor signaling is upregulated in ulcerative colitis, leading to mucosal breakdown. We hypothesized that IL-11 inhibits Fas ligand (FasL)-mediated apoptosis in intestinal epithelia. Cell death was monitored in IEC-18 cells by microscopy, caspase and poly(ADP-ribose) polymerase cleavage, mitochondrial release of cytochrome c, and abundance of cytoplasmic oligonucleosomal DNA. RT-PCR was used to monitor Fas, cIAP1, cIAP2, XIAP, cFLIP, survivin, and Bcl-2 family members. Fas membrane expression was detected by immunoblot. Inhibitors of JAK2, phosphatidylinositol 3-kinase (PI3-kinase), Akt 1, MEK1 and MEK2, and p38 MAPK were used to delineate IL-11's antiapoptotic mechanisms. IL-11 did not alter Fas expression. Pretreatment with IL-11 for 24 h before FasL reduced cytoplasmic oligonucleosomal DNA by 63.2%. IL-11 also attenuated caspase-3, caspase-9, and poly(ADP-ribose) polymerase cleavage without affecting expression of activated caspase-8 p20 or cytochrome c release. IL-11 did not affect mRNA expression of the candidate antiapoptotic genes. The MEK1 and MEK2 inhibitors U-0126 and PD-98059 significantly attenuated the protection of IL-11 against caspase-3 and caspase-9 cleavage and cytoplasmic oligonucleosomal DNA accumulation. Although Akt inhibition reversed IL-11-mediated effects on caspase cleavage, it did not reverse the protective effects of IL-11 by DNA ELISA. We conclude that IL-11-dependent MEK1 and MEK2 signaling inhibits FasL-induced apoptosis. The lack of reversal of the IL-11 effect on DNA cleavage by Akt inhibition, despite antagonism of caspase cleavage, suggests that IL-11 inhibits caspase-independent cell death signaling by FasL in a MEK-dependent manner.  相似文献   

11.
We recently identified a cDNA clone frommouse small intestine, which appears to be involved in folate transportwhen expressed in Xenopus oocytes. Theopen reading frame of this clone is identical to that of the reducedfolate carrier (RFC) (K. H. Dixon, B. C. Lanpher, J. Chiu, K. Kelley,and K. H. Cowan. J. Biol. Chem. 269: 17-20,1994). The characteristics of this cDNA clone [previously referred toas intestinal folate carrier 1 (IFC-1)] expressed inXenopus oocytes, however, were foundto be different from the characteristics of folate transport in nativesmall intestinal epithelial cells. To further study these differences,we determined the characteristics of RFC when expressed in anintestinal epithelial cell line, IEC-6, and compared the findings toits characteristics when expressed inXenopus oocytes. RFC was stablytransfected into IEC-6 cells by electroporation; its cRNA wasmicroinjected into Xenopus oocytes.Northern blot analysis of poly(A)+RNA from IEC-6 cells stably transfected with RFC cDNA (IEC-6/RFC) showed a twofold increase in RFC mRNA levels over controls. Similarly, uptake of folic acid and 5-methyltetrahydrofolate (5-MTHF) by IEC-6/RFCwas found to be fourfold higher than uptake in control sublines. Thisincrease in folic acid and 5-MTHF uptake was inhibited by treatingIEC-6/RFC cells with cholesterol-modified antisense DNAoligonucleotides. The increase in uptake was found to be mainly mediated through an increase in the maximal velocity(Vmax) of theuptake process [the apparent Michaelis-Menten constant(Km) alsochanged (range was 0.31 to 1.56 µM), but no specific trend wasseen]. In both IEC-6/RFC and control sublines, the uptake of bothfolic acid and 5-MTHF displayed 1)pH dependency, with a higher uptake at acidic pH 5.5 compared with pH7.5, and 2) inhibition to the sameextent by both reduced and oxidized folate derivatives. Thesecharacteristics are very similar to those seen in native intestinalepithelial cells. In contrast, RFC expressed inXenopus oocytes showed1) higher uptake at neutral andalkaline pH 7.5 compared with acidic pH 5.5 and2) higher sensitivity to reducedcompared with oxidized folate derivatives. Results of these studiesdemonstrate that the characteristics of RFC vary depending on the cellsystem in which it is expressed. Furthermore, the results may suggestthe involvement of cell- or tissue-specific posttranslationalmodification(s) and/or the existence of an auxiliary proteinthat may account for the differences in the characteristics of theintestinal RFC when expressed inXenopus oocytes compared with whenexpressed in intestinal epithelial cells.

  相似文献   

12.
The amino acid sequence of the Spirulina maxima ferredoxin has been determined. Spirulina maxima is a blue green algae and is a procaryote. The ferredoxins of the plant-algal type sequenced to date have all been isolated from eucaryotes. The S. maxima ferredoxin was composed of 98 amino acids arranged in a single polypeptide chain.The sequences of the various procaryote-eucaryote ferredoxins are compared and the differences discussed.  相似文献   

13.
The rat intestinal cell line, IEC-6, was used as a model to study effects of parathyroid hormone-related protein (PTHrP) on crypt cell growth. Studies showed that addition of PTHrP analogs (1-34), (67-86), or (107-139) to growth medium did not affect proliferation of cells grown in either high (10% Nu-Serum) or low serum (1% Nu-Serum). However, studies on clonal lines of IEC-6 cells stably transfected with PTHrP cDNA and overexpressing PTHrP showed that increased PTHrP production enhanced cell growth and 3H-thymidine incorporation in high, but not low, serum. Additional studies examined the role of the nuclear localization sequence (NLS) of PTHrP in mediating the growth effect. In three clonal IEC-6 lines transfected with PTHrP cDNA bearing a mutated NLS, the ability of PTHrP to stimulate 3H-thymidine incorporation and cell growth was lost. The results suggest that endogenously produced PTHrP can promote proliferation of IEC-6 cells and that the integrity of the NLS of PTHrP is required for its growth effects.  相似文献   

14.
Epidermal growth factor (EGF) mediates a variety of physiologic responses in rat intestine. EGF receptor (EGFR) responsiveness to EGF is mediated by the surface expression of high affinity EGFR, which is associated with the cytoskeleton (CSK). EGFR signal transduction appears to be mediated by the CSK association of EGFR and related signaling proteins. In the nontransformed intestinal cell line IEC-6, expression of EGFR, Src homology and collagen protein (SHC), phospholipase Cγ1 (PLCγ), and their tyrosine phosphorylation in response to EGF was assayed by immunoblot. The distribution of EGFR and tyrosine-phosphorylated EGFR was regulated by cell density. At confluence, EGFR and tyrosine-phosphorylated EGFR were predominantly associated with the Triton X-100-insoluble CSK at confluence, while predominantly Triton X-100-soluble at subconfluence. PLCγ was predominantly soluble at both states of confluence. Confluent but not subconfluent IEC-6 cells demonstrated a cascade of EGF-mediated events consisting of a transient CSK association of PLCγ with EGFR, a brief expression of tyrosine-phosphorylated PLCγ, a brief increase in PLCγ CSK association, and a prolonged soluble association of PLCγ with the EGFR. EGF led to an increase in the CSK association of SHC at both states of confluence and was greater at confluence. EGFR association with SHC was primarily soluble at subconfluence, while at confluence EGFR association was markedly increased and predominantly in the CSK. Thus, cell density regulates the CSK association of the EGFR and its ability to associate and activate signaling pathways in intestinal cells. J. Cell. Physiol. 172:126–136, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Mature, confluent monolayer cultures of IEC-6 rat intestinal epithelial cells in conventional growth media express both Na(+)-linked, concentrative nucleoside transport (NT) activity and equilibrative, inhibitor-sensitive NT activity, but do not show morphologic differentiation. Na(+)-dependent fluxes of Ado and formycin B were minor in early subconfluent IEC-6 monolayers, but increased severalfold to become the major component of influx of these agents in confluent monolayers grown in medium containing Nu-Serum, a commercial medium supplement with a low serum content. In monolayers cultured in medium with fetal bovine serum, cell proliferation rates were similar to those in medium supplemented with Nu-Serum, but expression of Na(+)-linked NT activity was 6-8-fold lower than in monolayers grown in the latter medium. Inclusion of hydrocortisone in growth medium with Nu-Serum caused a 2-fold increase in the expression of Na(+)-linked NT activity. Experiments in which components of medium supplementation were withheld showed that insulin and epidermal growth factor were important in expression of the Na(+)-linked NT activity. Because the Na(+)-linked NT system has a brush border location in fresh intestinal epithelium, it is concluded that the regulated expression of this activity in the IEC-6 monolayers is a differentiative change.  相似文献   

16.
17.
18.
Galactosyltransferase immunoreactive sites were localized in human duodenal enterocytes by the protein A-gold technique on thin sections from low temperature Lowicryl K4M embedded biopsy specimens. Antigenic sites detected with affinity-purified, monospecific antibodies were found at the plasma membrane of absorptive enterocytes with the most intense labeling appearing along the brush border membrane. The lateral plasma membrane exhibited a lower degree of labeling at the level of the junctional complexes but the membrane interdigitations were intensely labeled. The labeling intensity decreased progressively towards the basal part of the enterocytes and reached the lowest degree along the basal plasma membrane. Quantitative evaluation of the distribution of gold-particle label proved its preferential orientation to the outer surface of the plasma membrane. In addition to this membrane-associated labeling, the glycocalyx extending from the microvillus tips was heavily labeled. Occasionally, cells without plasma membrane labeling were found adjacent to positive cells. The demonstration of ecto-galactosyltransferase on membranes other than Golgi membranes precludes its general use as a marker for Golgi membrane fractions. The possible function of galactosyltransferase on a luminal plasma membrane is unclear at present, but a role in adhesion appears possible on the basolateral plasma membrane.  相似文献   

19.
Separate populations of M cells have been detected in the follicle-associated epithelium of Peyer's patches (PPs) and the villous epithelium of the small intestine, but the traits shared by or distinguishing the two populations have not been characterized. Our separate study has demonstrated that a potent mucosal modulator cholera toxin (CT) can induce lectin Ulex europaeus agglutinin-1 and our newly developed M cell-specific mAb NKM 16-2-4-positive M-like cells in the duodenal villous epithelium. In this study, we determined the gene expression of PP M cells, CT-induced villous M-like cells, and intestinal epithelial cells isolated by a novel approach using FACS. Additional mRNA and protein analyses confirmed the specific expression of glycoprotein 2 and myristoylated alanine-rich C kinase substrate (MARCKS)-like protein by PP M cells but not CT-induced villous M-like cells. Comprehensive gene profiling also suggested that CT-induced villous M-like cells share traits of both PP M cells and intestinal epithelial cells, a finding that is supported by their unique expression of specific chemokines. The genome-wide assessment of gene expression facilitates discovery of M cell-specific molecules and enhances the molecular understanding of M cell immunobiology.  相似文献   

20.
The transformation abilities of CD44s and CD44v6 in normal intestinal epithelial cells have not yet been reported. Herein, we established both CD44s and CD44v6 overexpressing stable clones from rat IEC-6 cells and demonstrated that the CD44v6 clones had higher saturation density and anchorage independence. Additionally, CD44v6 clones were more resistant to oxaliplatin and irinotecan which might be attributed to a significantly increased B-cell lymphoma 2 level and a reduced DNA damage response in these cells. Moreover, c-Met and vascular endothelial growth factor receptor 2 signalings were involved in modulating the saturation density in CD44v6 clones. Interestingly, higher activation of both AKT and extracellular-signal-regulated kinase (ERK) were detected in CD44v6 clones which might account in part for the cell density-independent nuclear localization of Yes-associated protein (YAP). To no surprise, increases of both saturation density and anchorage independence in CD44v6 clones were markedly diminished by PI3K, AKT, MEK, and ERK inhibitors as well as YAP knockdown. By contrast, overexpression of a constitutively active YAP robustly increased the aforementioned phenotypes in IEC-6 cells. Collectively, our results suggest that upregulation of CD44v6, but not CD44s, induces the transformation of normal intestinal epithelial cells possibly via activating the c-Met/AKT/YAP pathway which might also explain the important role of CD44v6 in the initiation of various carcinomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号