首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phototropins, a class of light-activated protein kinases, are essential for several blue light responses in plants and algae, including phototropism. These proteins contain two internal light, oxygen, and voltage sensitive (LOV) domains, which bind flavin chromophores and undergo a reversible photochemical formation of a cysteinyl-flavin adduct as part of the light sensing process. While the photodynamic properties of such photosensory domains are dictated by interactions between the chromophore and surrounding protein, more distant residues can play a significant role as well. Here we explore the role of the Phe434 residue in the photosensory response of the second LOV domain of Avena sativa phototropin 1 (AsLOV2), a model photochemical system for these LOV domains. Phe434 is more than 6 ? from the FMN chromophore in AsLOV2; nevertheless, an F434Y point mutation is likely to change several structural features of the chromophore binding site, as we demonstrate using molecular dynamics simulations. Transient absorption signals spanning 15 decades in time were compared for wild-type AsLOV2 and the F434Y mutant, showing that the latter has significantly altered photodynamics, including (i) a faster intersystem crossing leading to triplet formation on a nanosecond time scale, (ii) biphasic formation of adduct-state kinetics on the microsecond time scale, and (iii) greatly accelerated ground-state recovery kinetics on a second time scale. We present mechanistic models that link these spectroscopic differences to changes in the configuration of the critical cysteine residue and in the chromophore's accessibility to solvent and oxygen according to MD trajectories and purging experiments. Taken together, these results demonstrate the importance of residues outside the chromophore-binding pocket in modulating LOV domain photodynamics.  相似文献   

3.
Extracellular β‐NAD is known to elevate intracellular levels of calcium ions, inositol 1,4,5‐trisphate and cAMP. Recently, β‐NAD was identified as an agonist for P2Y1 and P2Y11 purinergic receptors. Since β‐NAD can be released extracellularly from endothelial cells (EC), we have proposed its involvement in the regulation of EC permeability. Here we show, for the first time, that endothelial integrity can be enhanced in EC endogenously expressing β‐NAD‐activated purinergic receptors upon β‐NAD stimulation. Our data demonstrate that extracellular β‐NAD increases the transendothelial electrical resistance (TER) of human pulmonary artery EC (HPAEC) monolayers in a concentration‐dependent manner indicating endothelial barrier enhancement. Importantly, β‐NAD significantly attenuated thrombin‐induced EC permeability as well as the barrier‐compromising effects of Gram‐negative and Gram‐positive bacterial toxins representing the barrier‐protective function of β‐NAD. Immunofluorescence microscopy reveals more pronounced staining of cell–cell junctional protein VE‐cadherin at the cellular periphery signifying increased tightness of the cell‐cell contacts after β‐NAD stimulation. Interestingly, inhibitory analysis (pharmacological antagonists and receptor sequence specific siRNAs) indicates the participation of both P2Y1 and P2Y11 receptors in β‐NAD‐induced TER increase. β‐NAD‐treatment attenuates the lipopolysaccharide (LPS)‐induced phosphorylation of myosin light chain (MLC) indicating its involvement in barrier protection. Our studies also show the involvement of cAMP‐dependent protein kinase A and EPAC1 pathways as well as small GTPase Rac1 in β‐NAD‐induced EC barrier enhancement. With these results, we conclude that β‐NAD regulates the pulmonary EC barrier integrity via small GTPase Rac1‐ and MLCP‐ dependent signaling pathways. J. Cell. Physiol. 223: 215–223, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
YtvA, a photosensory LOV (light‐oxygen‐voltage) protein from Bacillus subtilis, exists as a dimer that previously appeared to undergo surprisingly small structural changes after light illumination compared with other light‐sensing proteins. However, we now report that light induces significant structural perturbations in a series of YtvA‐LOV domain derivatives in which the Jα helix has been truncated or replaced. Results from native gel analysis showed significant mobility changes in these derivatives after light illumination; YtvA‐LOV without the Jα helix dimerized in the dark state but existed as a monomer in the light state. The absence of the Jα helix also affected the dark regeneration kinetics and the stability of the flavin mononucleotide (FMN) binding to its binding site. Our results demonstrate an alternative way of photo‐induced signal propagation that leads to a bigger functional response through dimer/monomer conversions of the YtvA‐LOV than the local disruption of Jα helix in the As‐LOV domain.  相似文献   

5.
Phototropins are autophosphorylating serine/threonine kinases responsible for blue-light perception in plants; their action gives rise to phototropism, chloroplast relocation, and opening of stomatal guard cells. The kinase domain constitutes the C-terminal part of Avena sativa phototropin 1. The N-terminal part contains two light, oxygen, or voltage (LOV) sensing domains, LOV1 and LOV2; each binds a flavin mononucleotide (FMN) chromophore (lambdamax = 447 nm, termed D447) and forms the light-sensitive domains, of which LOV2 is the principal component. Blue-light absorption produces a covalent adduct between a very conserved nearby cysteine residue and the C(4a) atom of the FMN moiety via the triplet state of the flavin. The covalent adduct thermally decays to regenerate the D447 dark state, with a rate that may vary by several orders of magnitude between different species. We report that the imidazole base can act as a very efficient enhancer of the dark recovery of A. sativa phot1 LOV2 (AsLOV2) and some other well-characterized LOV domains. Imidazole accelerates the thermal decay of AsLOV2 by 3 orders of magnitude in the submolar concentration range, via a base-catalyzed mechanism involving base abstraction of the FMN N(5)-H adduct state and subsequent reprotonation of the reactive cysteine. The LOV2 crystal structure suggests that the imidazole molecules may act from a cavity located in the vicinity of the FMN, explaining its high efficiency, populated through a channel connecting the cavity to the protein surface. Use of pH titration and chemical inactivation by diethyl pyrocarbonate (DEPC) suggests that histidines located at the surface of the LOV domain act as base catalysts via an as yet unidentified H-bond network, operating at a rate of (55 s)-1 at pH 8. In addition, molecular processes other than histidine-mediated base catalysis contibute significantly to the total thermal decay rate of the adduct and operate at a rate constant of (65 s)-1, leading to a net adduct decay time constant of 30 s at pH 8.  相似文献   

6.
PED (phosphoprotein enriched in diabetes) is a 15 kDa protein involved in many cellular pathways and human diseases including type II diabetes and cancer. We recently reported that PED is overexpressed in human cancers and mediates resistance to induced apoptosis. To better understand its role in cancer, we investigated on PED interactome in non‐small cell lung cancer (NSCLC). By the Tandem Affinity Purification (TAP), we identified and characterized among others, Rac1, a member of mammalian Rho GTPase protein family, as PED‐interacting protein. In this study we show that PED coadiuvates Rac1 activation by regulating AKT mediated Rac1‐Ser71 phosphorylation. Furthermore, we show that the expression of a constitutively active Rac, affected PED‐Ser104 phosphorylation, which is important for PED‐regulated ERK 1/2 nuclear localization. Through specific Rac1‐siRNA or its pharmacological inhibition, we demonstrate that PED augments migration and invasion in a Rac1‐dependent manner in NSCLC. In conclusion, we show for the first time that PED and Rac1 interact and that this interaction modulates cell migration/invasion processes in cancer cells through ERK1/2 pathway. J. Cell. Physiol. 225: 63–72, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
Reperfusion of ischemic tissue results in the generation of reactive oxygen species that contribute to tissue injury. The sources of reactive oxygen species in reperfused tissue are not fully characterized. We hypothesized that the small GTPase Rac1 mediates the oxidative burst in reperfused tissue and thereby contributes to reperfusion injury. In an in vivo model of mouse hepatic ischemia/reperfusion injury, recombinant adenoviral expression of a dominant negative Rac1 (Rac1N17) completely suppressed the ischemia/reperfusion-induced production of reactive oxygen species and lipid peroxides, activation of nuclear factor-kappa B, and resulted in a significant reduction of acute liver necrosis. Expression of Rac1N17 also suppressed ischemia/reperfusion-induced acute apoptosis. The protection offered by Rac1N17 was also evident in knockout mice deficient for the gp91phox component of the phagocyte NADPH oxidase. This work demonstrates the crucial role of a Rac1-regulated oxidase in mediating the production of injurious reactive oxygen species, which contribute to acute necrotic and apoptotic cell death induced by ischemia/reperfusion in vivo. Targeted inhibition of this oxidase, which is distinct from the phagocyte NADPH oxidase, should provide a new avenue for in vivo therapy aimed at protecting organs at risk from ischemia/reperfusion injury.-Ozaki, M., Deshpande, S. S., Angkeow, P., Bellan, J., Lowenstein, C. J., Dinauer, M. C., Goldschmidt-Clermont, P. J., Irani, K. Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo.  相似文献   

9.
Tensins are focal adhesion molecules that were identified and characterised in the late 1980s to early 1990s. They play an essential role in the control of cell adhesion. Tensins can bind the tail of ß integrin via their phospho tyrosine binding domain, they exhibit various protein interaction domains including a Src Homology 2 domain and they are serine‐, threonine‐ and tyrosine‐phosphorylated in response to various stimuli. Tensins serve as scaffolds to gather signalling molecules at the extracellular matrix adhesion complexes. Tensins have emerged as important regulators of cell adhesion and migration, in particular by participating in Rho GTPase signalling pathways. Tensins were shown to influence the activity of the GTPase RhoA, by regulating the Rho GTPase activating protein Deleted in Liver Cancer 1. More recently, Tensin 3 was also found to regulate Dock5, a guanine nucleotide exchange factor for the GTPase Rac, and to modulate podosome‐based adhesion structures in osteoclasts. This review focusses on the recent literature highlighting how Tensins can interplay with regulators of Rho GTPase signalling pathways and how this influences cell adhesion and migration.  相似文献   

10.
The sorting nexins SNX1 and SNX2 are members of the retromer complex involved in protein sorting within the endocytic pathway. While retromer‐dependent functions of SNX1 and SNX2 have been well documented, potential retromer‐independent roles remain unclear. Here, we show that SNX1 and SNX2 interact with the Rac1 and RhoG guanine nucleotide exchange factor Kalirin‐7. Simultaneous overexpression of SNX1 or SNX2 and Kalirin‐7 in epithelial cells causes partial redistribution of both SNX isoforms to the plasma membrane, and results in RhoG‐dependent lamellipodia formation that requires functional Phox homology (PX) and Bin/Amphiphysin/Rvs (BAR) domains of SNX, but is Rac1‐ and retromer‐independent. Conversely, depletion of endogenous SNX1 or SNX2 inhibits Kalirin‐7‐mediated lamellipodia formation. Finally, we demonstrate that SNX1 and SNX2 interact directly with inactive RhoG, suggesting a novel role for these SNX proteins in recruiting an inactive Rho GTPase to its exchange factor.  相似文献   

11.
Rac1 is a small GTPase and plays key roles in multiple cellular processes including the production of reactive oxygen species (ROS). However, whether Rac1 activation during myocardial ischaemia and reperfusion (I/R) contributes to arrhythmogenesis is not fully understood. We aimed to study the effects of Rac1 inhibition on store overload‐induced Ca2+ release (SOICR) and ventricular arrhythmia during myocardial I/R. Adult Rac1f/f and cardiac‐specific Rac1 knockdown (Rac1ckd) mice were subjected to myocardial I/R and their electrocardiograms (ECGs) were monitored for ventricular arrhythmia. Myocardial Rac1 activity was increased and ventricular arrhythmia was induced during I/R in Rac1f/f mice. Remarkably, I/R‐induced ventricular arrhythmia was significantly decreased in Rac1ckd compared to Rac1f/f mice. Furthermore, treatment with Rac1 inhibitor NSC23766 decreased I/R‐induced ventricular arrhythmia. Ca2+ imaging analysis showed that in response to a 6 mM external Ca2+ concentration challenge, SOICR was induced with characteristic spontaneous intracellular Ca2+ waves in Rac1f/f cardiomyocytes. Notably, SOICR was diminished by pharmacological and genetic inhibition of Rac1 in adult cardiomyocytes. Moreover, I/R‐induced ROS production and ryanodine receptor 2 (RyR2) oxidation were significantly inhibited in the myocardium of Rac1ckd mice. We conclude that Rac1 activation induces ventricular arrhythmia during myocardial I/R. Inhibition of Rac1 suppresses SOICR and protects against ventricular arrhythmia. Blockade of Rac1 activation may represent a new paradigm for the treatment of cardiac arrhythmia in ischaemic heart disease.  相似文献   

12.
Flavodoxins in combination with the flavin mononucleotide (FMN) cofactor play important roles for electron transport in prokaryotes. Here, novel insights into the FMN‐binding mechanism to flavodoxins‐4 were obtained from the NMR structures of the apo‐protein from Lactobacillus acidophilus (YP_193882.1) and comparison of its complex with FMN. Extensive reversible conformational changes were observed upon FMN binding and release. The NMR structure of the FMN complex is in agreement with the crystal structure (PDB ID: 3EDO ) and exhibits the characteristic flavodoxin fold, with a central five‐stranded parallel β–sheet and five α‐helices forming an α/β‐sandwich architecture. The structure differs from other flavoproteins in that helix α2 is oriented perpendicular to the β‐sheet and covers the FMN‐binding site. This helix reversibly unfolds upon removal of the FMN ligand, which represents a unique structural rearrangement among flavodoxins.  相似文献   

13.
Honokiol (HNK), a natural small molecular product, inhibited proliferation of HepG2 cells and exhibited anti‐tumor activity in nude mice. In this article, we applied a novel sensitive stable isotope labeling with amino acids in cell culture‐based quantitative proteomic method and a model of nude mice to investigate the correlation between HNK and the hotspot migration molecule Ras GTPase‐activating‐like protein (IQGAP1). The quantitative proteomic analysis showed that IQGAP1 was 0.53‐fold down‐regulated under 10 μg/mL HNK exposure for 24 h on HepG2 cells. Migration ability of HepG2 cells under HNK treatment was correlated with its expression level of IQGAP1. In addition, the biochemical validation on HepG2 cells and the tumor xenograft model further demonstrated that HNK decreased the expression level of IQGAP1 and its upstream proteins Cdc42/Rac1. These data supported that HNK can modulate cell adhesion and cell migration by acting on Cdc42/Rac1 signaling via IQGAP1 interactions with its upstream Cdc42/Rac1 proteins, which is a new molecular mechanism of HNK to exert its anti‐tumor activity.  相似文献   

14.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Cardiac tissue engineering presents a challenge due to the complexity of the muscle tissue and the need for multiple signals to induce tissue regeneration in vitro. We investigated the effects of compression (1 Hz, 15% strain) combined with fluid shear stress (10?2–10?1 dynes/cm2) provided by medium perfusion on the outcome of cardiac tissue engineering. Neonatal rat cardiac cells were seeded in Arginine‐Glycine‐Aspartate (RGD)‐attached alginate scaffolds, and the constructs were cultivated in a compression bioreactor. A daily, short‐term (30 min) compression (i.e., “intermittent compression”) for 4 days induced the formation of cardiac tissue with typical striation, while in the continuously compressed constructs (i.e., “continuous compression”), the cells remained spherical. By Western blot, on day 4 the expression of the gap junction protein connexin 43 was significantly greater in the “intermittent compression” constructs and the cardiomyocyte markers (α‐actinin and N‐cadherin) showed a trend of better preservation compared to the noncompressed constructs. This regime of compression had no effect on the proliferation of nonmyocyte cells, which maintained low expression level of proliferating cell nuclear antigen. Elevated secretion levels of basic fibroblast growth factor and transforming growth factor‐β in the daily, intermittently compressed constructs likely attributed to tissue formation. Our study thus establishes the formation of an improved cardiac tissue in vitro, when induced by combined mechanical signals of compression and fluid shear stress provided by perfusion. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

16.
Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation.  相似文献   

17.
Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super‐resolution imaging, we revealed the nanoscale organization and dynamics of branched F‐actin regulators in spines. Branched F‐actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger‐like protrusions. This spatial segregation differs from lamellipodia where both branched F‐actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin‐like protein‐2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F‐actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free‐diffusion on the membrane. Enhanced Rac1 activation and Shank3 over‐expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F‐actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity.  相似文献   

18.
Mutations in leucine‐rich repeat kinase 2 (LRRK2) are the most common cause of dominant‐inherited Parkinson's disease (PD), and yet we do not fully understand the physiological function(s) of LRRK2. Various components of the clathrin machinery have been recently found mutated in familial forms of PD. Here, we provide molecular insight into the association of LRRK2 with the clathrin machinery. We report that through its GTPase domain, LRRK2 binds directly to clathrin‐light chains (CLCs). Using genome‐edited HA‐LRRK2 cells, we localize LRRK2 to endosomes on the degradative pathway, where it partially co‐localizes with CLCs. Knockdown of CLCs and/or LRRK2 enhances the activation of the small GTPase Rac1, leading to alterations in cell morphology, including the disruption of neuronal dendritic spines. In Drosphila, a minimal rough eye phenotype caused by overexpression of Rac1, is dramatically enhanced by loss of function of CLC and LRRK2 homologues, confirming the importance of this pathway in vivo. Our data identify a new pathway in which CLCs function with LRRK2 to control Rac1 activation on endosomes, providing a new link between the clathrin machinery, the cytoskeleton and PD.  相似文献   

19.
The small GTPase Rac1 is involved in multiple cytosolic functions but recent data point out that Rac1 also translocates to the nucleus to regulate signalling pathways that control gene expression and progression through the cell cycle. Here, we identify the nuclear import receptor karyopherin α2 (KPNA2) as a direct interaction partner of Rac1. The C‐terminal polybasic region of Rac1 contains a nuclear localization signal (NLS), whereas Rac2 and Rac3 lack a functional NLS and do not bind to KPNA2. The presence of the NLS in Rac1 determines the specificity of the interaction and is a prerequisite for the nuclear import. Although this interaction is independent of the Rac1 GDP/GTP loading, the induction of the translocation requires Rac1 activation. The activation of Rac1 via the cytotoxic necrotizing factor 1 and the concurrent inhibition of its proteasomal degradation are crucial for the nuclear accumulation of Rac1. Conversely, the reduction of KPNA2 expression inhibits the nuclear import of Rac1. For the first time, our results show a direct interaction between Rac1 and KPNA2 and argue for a KPNA2‐dependent nuclear import of Rac1. Liquid chromatography tandem mass spectrometry (LC‐MS/MS) analysis revealed that nuclear Rac1 coimmunoprecipitates with numerous proteins. In the nucleus, Rac1 may participate in a variety of so far uncharacterized processes.  相似文献   

20.
Devising analysis tools for elucidating the regulatory mechanism of complex enzymes has been a challenging task for many decades. It generally requires the determination of the structural‐dynamical information of protein solvent systems far from equilibrium over multiple length and time scales, which is still difficult both theoretically and experimentally. To cope with the problem, we introduce a full‐residue space multiscale simulation method based on a combination of the kinetic Monte Carlo and molecular dynamics techniques, in which the rates of the rate‐determining processes are evaluated from a biomolecular forcefield on the fly during the simulation run by taking into account the full space of residues. To demonstrate its reliability and efficiency, we explore the light‐induced functional behavior of the full‐length phototropin1 from Chlamydomonas reinhardtii (Cr‐phot1) and its various subdomains. Our results demonstrate that in the dark state the light oxygen voltage‐2‐Jα (LOV2‐Jα) photoswitch inhibits the enzymatic activity of the kinase, whereas the LOV1‐Jα photoswitch controls the dimerization with the LOV2 domain. This leads to the repulsion of the LOV1‐LOV2 linker out of the interface region between both LOV domains, which results in a positively charged surface suitable for cell–membrane interaction. By contrast, in the light state, we observe that the distance between both LOV domains is increased and the LOV1‐LOV2 linker forms a helix–turn–helix (HTH) motif, which enables gene control through nucleotide binding. Finally, we find that the kinase is activated through the disruption of the Jα‐helix from the LOV2 domain, which is followed by a stretching of the activation loop (A‐loop) and broadening of the catalytic cleft of the kinase. Proteins 2014; 82:2018–2040. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号