首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Saito T  Isogai A 《Biomacromolecules》2004,5(5):1983-1989
Cellulose cotton linter was oxidized with sodium hypochlorite with catalytic amounts of sodium bromide and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) under various conditions. After this TEMPO-mediated oxidation, water-insoluble fractions were collected and characterized in terms of carboxylate and aldehyde contents, crystallinities and crystal sizes, degrees of polymerization, morphology, and water retention values. Carboxylate and aldehyde groups were introduced into the water-insoluble fractions up to about 0.7 and 0.3 mmol/g, respectively, by the oxidation, where recovery of the water-insoluble fractions were generally higher than 80%. Crystallinities and crystal sizes of cellulose I were nearly unchanged during the oxidation, and thus, carboxylate and aldehyde groups were introduced selectively on crystal surfaces and in disordered regions of the water-insoluble fractions. Water retention values of cotton linter can be increased from 60% to about 280% through the introduction of hydrophilic carboxylate groups and morphological changes from fibrous forms to short fragments by the TEMPO-mediated oxidation.  相似文献   

2.
Wood cellulose was converted to individual nanofibers of approximately 4 nm width and 380-570 nm average length by TEMPO-mediated oxidation. The TEMPO-oxidized cellulose nanofibers (TOCNs) were orally administered with glucose and glyceryl trioleate to mice and postprandial responses of blood glucose, insulin, glucose-dependent insulinotropic polypeptide (GIP), and triglycerides were studied. Both blood insulin and GIP concentrations were decreased by TOCN with a carboxyl content and aspect ratio of 1.2 mmol g(-1) and 120, respectively, in dose-dependent manners (0-0.3 mg g(-1) body weight). Of the TOCNs examined, that with a carboxyl content and aspect ratio of 1.2 mmol g(-1) and 120, respectively, was the most effective in reducing postprandial blood glucose, plasma insulin, GIP, and triglyceride concentrations. Thus, TOCNs were found to exhibit characteristic biological activities when administered to mice and may have potential applications in biomedical fields for human health.  相似文献   

3.
A new TEMPO-mediated oxidation with catalytic amounts of TEMPO and NaClO, and NaClO2 as the primary oxidant under aqueous conditions at pH 3.5–6.8 was used to prepare water-soluble β-(1  4)-linked polyglucuronic acid Na salts (cellouronic acids, CUAs) with high molecular weight in good yield. When regenerated cellulose with original degree of polymerization (DP) of 680 was oxidized by the 4-acetamide-TEMPO/NaClO/NaClO2 system at pH 5.8 and 40 °C for 3 days, CUA with weight average DP (DPw) of 490 was obtained quantitatively. No peaks other than six signals from β-(1  4)-linked anhydroglucuronic acid units of CUA were detected in the solution-state 13C NMR spectra of the oxidized products. Although the oxidized product prepared under the above conditions contained about 20% unoxidized cellulose particles, the non-CUA fraction was separable from CUAs by filtration or salt precipitation. The DPw values and yields of CUAs after the filtration or salt precipitation treatment were 250–380 and 45–71%, respectively.  相似文献   

4.
Never-dried native celluloses (bleached sulfite wood pulp, cotton, tunicin, and bacterial cellulose) were disintegrated into individual microfibrils after oxidation mediated by the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical followed by a homogenizing mechanical treatment. When oxidized with 3.6 mmol of NaClO per gram of cellulose, almost the totality of sulfite wood pulp and cotton were readily disintegrated into long individual microfibrils by a treatment with a Waring Blendor, yielding transparent and highly viscous suspensions. When observed by transmission electron microscopy, the wood pulp and cotton microfibrils exhibited a regular width of 3-5 nm. Tunicin and bacterial cellulose could be disintegrated by sonication. A bulk degree of oxidation of about 0.2 per one anhydroglucose unit of cellulose was necessary for a smooth disintegration of sulfite wood pulp, whereas only small amounts of independent microfibrils were obtained at lower oxidation levels. This limiting degree of oxidation decreased in the following order: sulfite wood pulp > cotton > bacterial cellulose, tunicin.  相似文献   

5.
Never-dried and once-dried hardwood celluloses were oxidized by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated system, and highly crystalline and individualized cellulose nanofibers, dispersed in water, were prepared by mechanical treatment of the oxidized cellulose/water slurries. When carboxylate contents formed from the primary hydroxyl groups of the celluloses reached approximately 1.5 mmol/g, the oxidized cellulose/water slurries were mostly converted to transparent and highly viscous dispersions by mechanical treatment. Transmission electron microscopic observation showed that the dispersions consisted of individualized cellulose nanofibers 3-4 nm in width and a few microns in length. No intrinsic differences between never-dried and once-dried celluloses were found for preparing the dispersion, as long as carboxylate contents in the TEMPO-oxidized celluloses reached approximately 1.5 mmol/g. Changes in viscosity of the dispersions during the mechanical treatment corresponded with those in the dispersed states of the cellulose nanofibers in water.  相似文献   

6.
Polystyrene (PS) composites reinforced with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNs) with various weight ratios were fabricated by casting and vacuum-drying mixtures of PS/N,N-dimethylformamide (DMF) solution and TOCN/DMF dispersion. TOCNs of 3 to 4 nm width were dispersed homogeneously at the individual nanofibril level in the PS matrix, such that the TOCN/PS nanocomposite films exhibited high optical transparencies and their tensile strengths, elastic moduli, and thermal dimensional stabilities increased with increasing TOCN content. Dynamic mechanical analysis showed that the storage modulus of the TOCN/PS films increased significantly with TOCN content above the glass-transition temperature of PS by the formation of an interfibrillar network structure of TOCNs in the PS matrix, based on percolation theory. The outstanding and effective polymer reinforcement by TOCNs results from their high aspect ratio, high crystallinity, and nanodispersibility in the PS matrix.  相似文献   

7.
Dynamic viscoelasticity measurements were performed for aqueous dispersions of cellulose nanofibers prepared by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and subsequent mechanical disintegration in water. The frequency dependence of the storage and loss moduli of 0.02% (w/v) dispersions of TEMPO-oxidized cellulose nanofibers in water showed terminal relaxation behavior at relatively lower angular frequencies. This strongly suggests that each cellulose nanofiber in the dispersion behaves as a semiflexible rod-like macromolecular chain or colloidal particle. Furthermore, a clear boundary was observed between the terminal relaxation and rubbery plateau regions. The longest viscoelastic relaxation time, τ, was estimated from the angular frequency, corresponding to the boundary point, and the average length of the cellulose nanofibers, L, was estimated using the equation τ = πη(s)L(3)/[18k(B)T ln(L/d)]. The equation gave a value of L = 2.2 μm, which was in good agreement with TEM observations.  相似文献   

8.
Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers   总被引:1,自引:0,他引:1  
Cotton and lyocell fibers were oxidized with sodium hypochlorite and catalytic amount of sodium bromide and 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO), under various conditions. Water-insoluble fractions, collected after TEMPO-mediated oxidation, were analyzed and characterized in terms of weight loss, aldehyde and carboxyl contents, and sorption properties. Aldehyde and carboxyl groups were introduced into the oxidized cotton up to 0.321 and 0.795 mmol/g, and into the oxidized lyocell up to 0.634 and 0.7 mmol/g, respectively, where weight loss was generally lower than 12% for cotton and 27% for lyocell. Oxidized cotton and lyocell were shown to exhibit 1.55 and 2.28 times higher moisture sorption than the original fibers, respectively, and water retention values up to about 85% for cotton and 335% for lyocell, while iodine sorption values of oxidized fibers were lower up to 35% for cotton and up to 18% for lyocell than the original fibers.  相似文献   

9.
The 2,2,6,6-tetramethylpiperidine-1-oxy radial (TEMPO)-mediated oxidation was applied to aqueous suspensions of cotton linters, ramie and spruce holocellulose at pH 10.5, and water-insoluble fractions of the TEMPO-oxidized celluloses collected by filtration with water were analyzed by optical and transmission electron microscopy and others. The results showed that both fibrous forms and microfibrillar nature of the original native celluloses were maintained after the TEMPO-mediated oxidation, even though carboxylate and aldehyde groups of 0.67–1.16 and 0.09–0.21 mmol/g, respectively, were introduced into the water-insoluble fractions. Neither crystallinity nor crystal size of cellulose I of the original native celluloses was changed under the conditions adopted in this study. Carboxylate groups in the TEMPO-oxidized ramie were mapped by labeling with lead ions as their counter ions. The transmission electron micrographs indicated that some heterogeneous distribution of carboxylate groups along each cellulose microfibril or each bundle of cellulose microfibrils seemed to be present in the TEMPO-oxidized celluloses.  相似文献   

10.
Described is a new, greener approach to increasing adhesion between wet cellulose surfaces. Polyvinylamine (PVAm) with grafted TEMPO spontaneously adsorbs onto cellulose and oxidizes the C6 hydroxyl to aldehyde groups that react to form covalent bonds with primary amines on PVAm. Grafted TEMPO offers two important advantages over solutions of low-molecular-weight water-soluble TEMPO derivatives. First, the oxidation of porous cellulose wood fibers is restricted to the exterior surfaces accessible to high-molecular-weight PVAm. Thus, fibers are not weakened by excessive oxidation of the interior fiber wall surfaces. The second advantage of tethered TEMPO is that the total dose of TEMPO required to oxidize dilute fiber suspensions is much less than that required by water-soluble TEMPO derivatives. PVAm-TEMPO is stable under oxidizing conditions. The oxidation activity of the immobilized TEMPO was demonstrated by the conversion of methylglyoxal to pyruvic acid.  相似文献   

11.
Cellulose nanofibers were prepared by TEMPO-mediated oxidation of wood pulp and tunicate cellulose. The cellulose nanofiber suspension in water was spun into an acetone coagulation bath. The spinning rate was varied from 0.1 to 100 m/min to align the nanofibers to the spun fibers. The fibers spun from the wood nanofibers had a hollow structure at spinning rates of >10 m/min, whereas the fibers spun from tunicate nanofibers were porous. Wide-angle X-ray diffraction analysis revealed that the wood and tunicate nanofibers were aligned to the fiber direction of the spun fibers at higher spinning rates. The wood spun fibers at 100 m/min had a Young's modulus of 23.6 GPa, tensile strength of 321 MPa, and elongation at break of 2.2%. The Young's modulus of the wood spun fibers increased with an increase in the spinning rate because of the nanofiber orientation effect.  相似文献   

12.
Burgert I  Eder M  Gierlinger N  Fratzl P 《Planta》2007,226(4):981-987
Plants are able to pre-stress their tissues in order to actuate their organs. Here, we demonstrate with two tissue types of the secondary xylem of conifers (normal wood and compression wood of spruce (Picea abies)) that either tensile or compressive stresses can develop in the longitudinal direction during the swelling of the cell wall. This dramatic difference appears to be due mostly to differences in cell geometry and cellulose fibril orientation. A mechanical model was developed to demonstrate swelling experiments with the help of sodium iodide experiments. The reversal of longitudinal extension can be predicted, based on the orientation of the (nearly inextensible) cellulose fibrils and the shape of the cell.  相似文献   

13.
Collagen fibrils are the principal source of mechanical strength of connective tissues such as tendon, skin, cornea, cartilage and bone. The ability of these tissues to withstand tensile forces is directly attributable to the length and diameter of the fibrils, and to interactions between individual fibrils. Although electron microscopy studies have provided information on fibril diameters, little is known about the length of fibrils in tissue and how fibrils interact with each other. The question of fibril length has been difficult to address because fibril ends are rarely observed in cross-sections of tissue. The paucity of fibril ends, or tips, has led to controversy about how long individual fibrils might be and how the fibrils grow in length and diameter. This review describes recent discoveries that are relevant to these questions. We now know that vertebrate collagen fibrils are synthesised as short (1-3 microm) early fibrils that fuse end-to-end in young tissues to generate very long fibrils. The diameter of the final fibril is determined by the diameter of the collagen early fibrils. During a late stage of tissue assembly fibril tips fuse to fibril shafts to generate branched networks. Of direct relevance to fibril fusion is the fact that collagen fibrils can be unipolar or bipolar, depending on the orientation of collagen molecules in the fibril. Fusion relies on: (1) specific molecular interactions at the carboxyl terminal ends of unipolar collagen fibrils; and (2) the insulator function of small proteoglycans to shield the surfaces of fibrils from inappropriate fusion reactions. The fusion of tips to shafts to produce branched networks of collagen fibrils is an elegant mechanism to increase the mechanical strength of tissues and provides an explanation for the paucity of fibril tips in older tissue.  相似文献   

14.
The effects of TEMPO-mediated oxidation, performed with NaClO, a catalytic amount of NaBr, and 2,2′,6,6′-tetramethylpiperidine-1-oxy radical (TEMPO), were studied on lyocell fibers by means of GPC using multiple detection and group-selective fluorescence labeling according to the CCOA and FDAM methodology. The applied method determines functional group content as a sum parameter, as well as functional group profiles in relation to the molecular weight of the cellulose fibers. Both the CHO and COOH profiles, as well as molecular weight alterations, were analyzed. A significant decrease in the average molecular weight was obtained during the first hour of TEMPO-mediated oxidation, but prolonged oxidation time resulted in no strong additional chain scission. Significant amounts of COOH groups were introduced in the high molecular weight fractions by the oxidation with higher concentrations of NaClO (2.42–9.67 mmol NaClO/g fiber) after modification times of 1 h or longer.  相似文献   

15.
Catalytic oxidation of softwood cellulose using NaClO and either 2,2,6,6-tetramethylpiperidine-1-oxyl (4-H-TEMPO) or 4-acetamido-TEMPO (4-AcNH-TEMPO) was applied with NaClO(2) used as a primary oxidant in an aqueous buffer at pH 4.8 or 6.8. When the 4-AcNH-TEMPO-mediated oxidation was applied to softwood cellulose in water at pH 4.8 and 40 °C, the carboxylate content rose to ~1.3 mmol/g after reaction for 48 h and the DP(v) value was more than 1100. This 4-AcNH-TEMPO-oxidized softwood cellulose was mostly converted to individual nanofibrils by mechanical disintegration in water, with uniform widths of 3-4 nm and lengths greater than 1 μm.  相似文献   

16.
Chitin nanocrystals dispersed in water were successfully prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) mediated oxidation of alpha-chitin in water at pH 10 under specific conditions, followed by ultrasonic treatment. When the amount of NaClO added as co-oxidant in the oxidation was 5.0 mmol/g of chitin, the weight percentage of the water-insoluble fraction in the TEMPO-oxidized chitin was 90%, and its carboxylate content reached 0.48 mmol/g. Since the TEMPO-oxidized chitin thus prepared had a crystallinity as high as that of the original alpha-chitin, the C6 carboxylate groups formed by TEMPO-mediated oxidation can be regarded as being present only on the chitin crystallite surfaces. No N-deacetylation occurred on the TEMPO-oxidized chitins. When the TEMPO-oxidized chitin was subjected to ultrasonic treatment in water, mostly individualized chitin nanocrystals were obtained, and the average nanocrystal length and width were 340 and 8 nm, respectively.  相似文献   

17.
Binger KJ  Griffin MD  Howlett GJ 《Biochemistry》2008,47(38):10208-10217
Methionine residues are linked to the pathogenicity of several amyloid diseases; however, the mechanism of this relationship is largely unknown. These diseases are characterized, in vivo, by the accumulation of insoluble proteinaceous plaques, of which the major constituents are amyloid fibrils. In vitro, methionine oxidation has been shown to modulate fibril assembly in several well-characterized amyloid systems. Human apolipoprotein (apo) C-II contains two methionine residues (Met-9 and Met-60) and readily self-assembles in vitro to form homogeneous amyloid fibrils, thus providing a convenient system to examine the effect of methionine oxidation on amyloid fibril formation and stability. Upon oxidation of the methionine residues of apoC-II with hydrogen peroxide, fibril formation was inhibited. Oxidized apoC-II molecules did not inhibit native apoC-II assembly, indicating that the oxidized molecules had a reduced ability to interact with the growing fibrils. Single Met-Val substitutions were performed and showed that oxidation of Met-60 had a more significant inhibitory effect than oxidation of Met-9. In addition, Met-Gln substitutions designed to mimic the effect of oxidation on side chain hydrophilicity showed that a change in hydrophobicity at position 60 within the core region of the fibril had a potent inhibitory effect. The oxidation of preformed apoC-II fibrils caused their dissociation; however, mutants in which the Met-60 was substituted with a valine were protected from this peroxide-induced dissociation. This work highlights an important role for methionine in the formation of amyloid fibril structure and gives new insight into how oxidation affects the stability of mature fibrils.  相似文献   

18.
Nanocellulose/montmorillonite (MTM) composite films were prepared from 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose nanofibrils (TOCNs) with an aspect ratio of >200 dispersed in water with MTM nanoplatelets. The composite films were transparent and flexible and showed ultrahigh mechanical and oxygen barrier properties through the nanolayered structures, which were formed by compositing the anionic MTM nanoplatelet filler in anionic and highly crystalline TOCN matrix. A composite film with 5% MTM content had Young's modulus 18 GPa, tensile strength 509 MPa, work of fracture of 25.6 MJ m(-3), and oxygen permeability 0.006 mL μm m(-2) day(-1) kPa(-1) at 0% relative humidity, respectively, despite having a low density of 1.99 g cm(-3). As the MTM content in the TOCN/MTM composites was increased to 50%, light transmittance, tensile strength, and elongation at break decreased, while Young's modulus was almost unchanged and oxygen barrier property was further improved to 0.0008 mL μm m(-2) day(-1) kPa(-1).  相似文献   

19.
《Biotechnology advances》2017,35(2):251-266
Oxidation of the primary OH groups in cellulose is a pivotal reaction both at lab and industrial scale, leading to the value-added products, i.e. oxidized cellulose which have tremendous applications in medicine, pharmacy and hi-tech industry. Moreover, the introduction of carboxyl moieties creates prerequisites for further cellulose functionalization through covalent attachment or electrostatic interactions, being an essential achievement designed to boost the area of cellulose-based nanomaterials fabrication. Various methods for the cellulose oxidation have been developed in the course of time, aiming the selective conversion of the OH groups. These methods use: nitrogen dioxide in chloroform, alkali metal nitrites and nitrates, strong acids alone or in combination with permanganates or sodium nitrite, ozone, and sodium periodate or lead (IV) tetraacetate. In the case of the last two reagents, cellulose dialdehydes derivatives are formed, which are further oxidized by sodium chlorite or hydrogen peroxide to form dicarboxyl groups. A major improvement in the cellulose oxidation was represented by the introduction of the stable nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, a major impediment for the researchers working in this area is related with the severe depolymerisation occurred during the TEMPO-mediated conversion of CH2OH into COOH groups. On the other hand, the cellulose depolymerisation represent the key step, in the general effort of searching for alternative strategies to develop new renewable, carbon-neutral energy sources. In this connection, exploiting the biomass feed stocks to produce biofuel and other low molecular organic compounds, involves a high amount of research to improve the overall reaction conditions, limit the energy consumption, and to use benign reagents. This work is therefore focused on the parallelism between these two apparently antagonist processes involving cellulose, building a necessary bridge between them, thinking how the reported drawbacks of the TEMPO-mediated oxidation of cellulose are heading towards to the biomass valorisation, presenting why the apparently undesired side reactions could be turned into beneficial processes if they are correlated with the existing achievements of particular significance in the field of cellulose conversion into small organic compounds, aiming the general goal of pursuing for alternatives to replace the petroleum-based products in human life.  相似文献   

20.
Water-soluble cellulose acetates with a degree of substitution (DS) of 0.5, prepared by partial deacetylation of cellulose acetate of DS=2.5, were oxidized with catalytic amount of 2,2,6,6,-tetramethyl-1-piperidinyloxy radical (TEMPO), sodium hypochlorite, and sodium bromide to provide useful cellouronic acids. The oxidation was conducted at a constant pH of 10 and at 2 degrees C to avoid the occurrence of side products. Whereas only the primary hydroxyl groups of cellulose acetate were oxidized, a variable degree of oxidation (DO) resulted in a range of 0.33 to 1.0, depending on the concentration in sodium hypochlorite. Thus, polyglucuronic acid as well as partially acetylated cellouronic acid, having a range of DO were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号