首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An integrated control strategy of pH, shear stress, and dissolved oxygen tension (DOT) for fermentation scale-up of the marine-derived fungus Aspergillus glaucus HB 1–19 for the production of the anti-cancer compound aspergiolide A was studied. Keeping initial pH of 6.5 and shifting pH from 6.0 to 7.0 intermittently during the production phase greatly facilitated biosynthesis of aspergiolide A in shake flask cultures. Thus, a pH-shift strategy was proposed that shifting pH to 7.0 once it went lower than 6.0 by pulsed feeding NaOH solution during the production phase in bioreactor fermentation of A. glaucus HB 1–19. As a result, aspergiolide A production in a 30-L bioreactor was increased to 37.6?mg/L, which was 48.6% higher than that in 5-L bioreactor without pH shift. Fermentation scale-up was then performed in a 500-L bioreactor on the basis of an integrated criterion of near-same impeller tip velocity of early phase, DOT levels, and pH shift. The production of aspergiolide A was successfully obtained as 32.0?mg/L, which was well maintained during the process scale-up. This work offers useful information for process development of large-scale production of marine microbial metabolites.  相似文献   

2.
Investigations on Ganoderma lucidum fermentation suggested that the responses of the cell growth and metabolites biosynthesis to pH and dissolved oxygen tension (DOT) were different. The ganoderic acid (GA) production of 321.6 mg/L was obtained in the pH-shift culture by combining a 4-day culture at pH 3.0 with the following 6-day culture at pH 4.5, which was higher by 45% and 300% compared with the culture at pH 3.0 and 4.5, respectively. The GA production of 487.1 mg/L was achieved in the DOT-shift culture by combining a 6-day culture at 25% of DOT with a following 6-day culture at 10% of DOT, which was higher by 43% and 230% compared with the culture at 25% and 10% of DOT, respectively. A fed-batch fermentation process by combining the above-mentioned pH-shift and DOT-shift strategies resulted in a significant synergistic enhancement of GA accumulation up to 754.6 mg/L, which is the highest reported in the submerged fermentation of G. lucidum in stirred-tank bioreactor.  相似文献   

3.
The effects of pH, agitation speed, and dissolved oxygen tension (DOT), significant in common fungal fermentations, on the production of polygalacturonase (PG) enzyme and their relation to morphology and broth rheology were investigated using Aspergillus sojae in a batch bioreactor. All three factors were effective on the response parameters under study. An uncontrolled pH increased biomass and PG activity by 27% and 38%, respectively, compared to controlled pH (pH 6) with an average pellet size of 1.69 +/- 0.48 mm. pH did not significantly affect the broth rheology but created an impact on the pellet morphology. Similarly, at constant agitation speed the maximum biomass obtained at 500 rpm and at 30 h was 3.27 and 3.67 times more than at 200 and 350 rpm, respectively, with an average pellet size of 1.08 +/- 0.42 mm. The maximum enzyme productivity of 0.149 U mL-1 h-1 was obtained at 200 rpm with an average pellet size of 0.71 +/- 0.35 mm. Non-Newtonian and pseudoplastic broth rheology was observed at 500 rpm agitation speed, broth rheology exhibited dilatant behavior at the lower agitation rate (200 rpm), and at the medium agitation speed (350 rpm) the broth was close to Newtonian. Furthermore, a DOT range of 30-50% was essential for maximum biomass formation, whereas only 10% DOT was required for maximum PG synthesis. Non-Newtonian shear thickening behavior (n > 1.0) was depicted at DOT levels of 10% and 30%, whereas non-Newtonian shear thinning behavior (n < 1.0) was dominant at 50% DOT. The overall fermentation duration (50-70 h) was considerably shorter compared to common fungal fermentations, revealing the economic feasibility of this particular process. As a result this study not only introduced a new strain with a potential of producing a highly commercially significant enzyme but also provided certain parameters significant in the design and mathematical modeling of fungal bioprocesses.  相似文献   

4.
The regulatory effect of different concentrations of dissolved oxygen on the production of fusicoccins by the fungus Fusicoccum amygdali Del. was studied. The maximum output of total fusicoccins was obtained by using a profiled dissolved oxygen tension (DOT) regime, in which the DOT was maintained at 15–20% during the biomass growth phase and at 5–8% during the fusicoccins production phase. In comparison with the profiled regime, the maintenance of DOT at 15–20% during the whole fermentation shortened the fusicoccins production phase. The fermentation performance at a low DOT (5–8%) inhibited both the accumulation of biomass and the production of fusicoccins. At high DOT (40–50%), an accelerated accumulation of the biomass with an expressed autolysis of mycelia took place, and the production of fusicoccins was lowered. The qualitative composition of individual fusicoccins varied substantially at different DOTs. Fusicoccins, A, C, D, J, H, 16-O-demethyl-J, detretpentenylfusicoccin and some minor fusicoccin metabolites were found in the fermentation broth using the method of liquid secondary ion mass spectrometry. It was established that the profiled DOT regime (15–20% to 5–8%) provided both the maximum concentration of fusicoccins and an enhanced accumulation of the main metabolite – fusicoccin A (FC A). The performance of the fermentation at a DOT of 15–20% decreased the content of FC A by 2–6% in comparison with the profiled DOT regime, and increased the content of fusicoccin C to 14–20% of the total fusicoccins. Fermentation at DOT of 5–8% was characterized by the highest content of the precursors of FC A, the less oxidized fusicoccins H and J, the contents of which were in range 7–12% and 16–17% of total fusicoccins, respectively.  相似文献   

5.
The influence of controlled pH (5.0–6.5) and initial dissolved oxygen level (0–90% air saturation) on nisin Z production in a yeast extract/Tween 80-supplemented whey permeate (SWP) was examined during batch fermentations with citrate positive Lactococcus lactis subsp. lactis UL719. The total activity corresponding to the sum of soluble and cell-bound activities, as measured by a critical dilution method, was more than 50% lower at pH 5.0 than in the range 5.5–6.5, although the specific production decreased as pH increased. A maximum nisin Z activity of 8200 AU/ml (4100IU/ml) was observed in the supernatant after 8h of culture for pH ranging from 5.5 to 6.5. Prolonging the culture beyond 12h decreased this activity at pH 6.0 and 6.5 but not at pH 5.5 or 5.0. A corresponding increase in cell-bound activity was probably due to adsorption of soluble bacteriocin to the cell wall. Aeration increased cell-bound and total activity to maximum values of 32800 and 41000 AU/ml (16400 and 20500IU/ml), respectively, with an initial level of 60% air saturation after 24h of incubation at pH 6.0. The specific production at 60% or 90% initial air saturation was eight-fold higher than at 0%.  相似文献   

6.
Summary Limitations in mass and momentum transfer coupled with high hydrostatic pressures create significant spatial variations in dissolved gas concentrations in large fermenters. Microorganisms are subjected to fluctuating environmental conditions as they pass through the zones in a stirred vessel or along a closed loop fermenter.A 7-litre fermenter was modified to simulate the dissolved gas and hydrostatic pressure gradients in large vessels.The effect of cycling dissolved oxygen tension (DOT) on penicillin production by Penicillium chrysogenum P1 was investigated. The fermentation was affected by evironmental conditions such as medium composition, pH, size of inoculum, stirrer speed and DOT. Inoculum size below 10% (v/v) and stirrer speeds above 850 rpm caused significant reductions in specific prenicillin production rates (qpen). qpen values were measured at different constant DOT levels. Below 30% air saturation qpen decreased sharply and no production was observed at 10%. Penicillin synthesis was impaired irreversibly below 10% DOT. The same profile was observed at higher stirrer speeds and air flow rates indicating that the effect was a physiological one. Oxygen uptake of the culture was affected significantly below 7% DOT, demonstrating that the critical DOT values for penicillin production and oxygen uptake are two distinct parameters. Carrying out the fermentation at one atmosphere over pressure was found to have no effect. When the dissolved oxygen concentration of the culture medium was cycled around the critical DOT for penicillin production, a considerable decrease in the specific penicillin production rate was observed. The effect was reversible but not transient, indicating a shift in cell metabolism.These results demonstrate the unfavourable effect of fluctuating environmental conditions on culture performance in stirred tanks. They suggest that these effects should be accounted for during strain selection, process development and scale up stages of an industrial process if the productivities in small scale vessels are to be obtained.  相似文献   

7.
Summary A detailed metabolic flux analysis (MFA) for hyaluronic acid (HA) production by Streptococcus zooepidemicus was carried out. A metabolic network was constructed for the metabolism of S. zooepidemicus. Fluxes through these reactions were estimated by MFA using accumulation rates of biomass and product, consumption rate of glucose in batch fermentation and dissolved oxygen-controlled fermentation. The changes of the fluxes were observed at different stages of batch fermentation and in different dissolved oxygen tension (DOT)-controlled fermentation processes. The effects of metabolic nodes on HA accumulation under various culture conditions were investigated. The results showed that high concentration of glucose in the medium did not affect metabolic flux distribution, but did influence the uptake rate of glucose. HA synthesis was influenced by DOT via flux redistribution in the principal node. Adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH) produced in the fermentation process are associated with cell growth and HA synthesis.  相似文献   

8.
A suitable medium was developed from modified Richard's medium plus V8 juice (RM8) to produce high levels of desiccation-tolerant conidia ofTrichoderma harzianumstrain 1295-22. The addition of 9% (v/v) glycerol to RM8 improved both biomass production and desiccation tolerance of the conidia ofT. harzianum.This medium was then used in a laboratory scale fermenter (1.5 liter) to determine optimal operating conditions. The optimal temperature for conidial production and desiccation tolerance improvement in the fermenter was 32°C when dissolved oxygen was maintained at 50% saturation of air, and the stirring rate was 1000 revolutions per minute. The initial water potential of the medium (with 9% glycerol) was −3.7 MPa, the pH was 6, and neither was controlled during fermentation. Changes in medium pH and dissolved oxygen were associated with the stages of morphological development and conidiation. The pH of the medium decreased concurrently with germ-tube elongation and mycelium development and then increased to 6.0–6.2 at phialide formation. Intensive conidiation occurred at pH 6.3–6.5 and reached its maximal level at 6.9–7.1. Changes in pH values could be used as indicators to monitor the morphological development and conidiation ofT. harzianumduring fermentation. The use of a 48-h-old culture inoculum, rather than conidial inoculum, to start fermentation reduced the time required to complete the shift from vegetative growth to phialide formation. Intensive conidiation occurred immediately after the addition of culture inoculum and reached maximum levels within 68 h of fermentation. Dry weight of biomass increased with the duration of fermentation and was greatest at 96 h. However, no improvements in conidia/gram and CFU/gram were achieved after 72 h of fermentation. The desiccation tolerance of conidia harvested at 72 or 96 h was significantly (P = 0.05) greater than that of conidia harvested at 48 h of fermentation. Results obtained from this study could be used for further scale-up of the fermentation process.  相似文献   

9.
Batch propionic acid fermentation of lactose by Propionibacterium acidipropionici were studied at various pH values ranging from 4.5 to 7.12. The optimum pH range for cell growth was between 6.0 and 7.1, where the specific growth rate was approximately 0.23 h(-1). The specific growth rate decreased with the pH in the acids have been identified as the two major fermentation products from lactose. The production of propionic acid was both growth and nongrowth associated, while acetic acid formation was closely associated with cell growth. The propionic acid yield increased with decreasing pH; It changed from approximately 33% (w/w) at pH 6.1-7.1 to approximately 63% at pH 4.5-5.0. In contrast, the acetic acid yield was not significantly affected by the pH; it remained within the range of 9%-12% at all pH values. Significant amounts of succinic and pyruvic acids were also formed during propionic acid fermentation of lactose. However, pyruvic acid was reconsumed and disappeared toward the end of the fermentation. The succinic acid yield generally decreased with the pH, from a high value of 17% at pH 7.0 to a low 8% at pH 5.0 Effects of growth nutrients present in yeast ex-tract on the fermentation were also studied. In general, the same trend of pH effects was found for fermentations with media containing 5 to 10 g/L yeast extract. However, More growth nutrients would be required for fermentations to be carried out efficienytly at acidic pH levels.  相似文献   

10.
溶氧及pH对产朊假丝酵母分批发酵生产谷胱甘肽的影响   总被引:16,自引:0,他引:16  
在7 L发酵罐中研究了溶氧和pH对产朊假丝酵母分批发酵生产谷胱甘肽的影响。结果表明,当葡萄糖浓度为30 g/L且通气量控制在5 L/min时,搅拌转速达到300 r/min即可满足细胞生长和谷胱甘肽合成对溶解氧的需求。不同pH控制方式对谷胱甘肽分批发酵的影响有较大差异。不控制pH时,细胞干重和谷胱甘肽产量比控制pH为55的发酵分别低27%和95%,且有50%的谷胱甘肽向胞外渗漏。研究了将pH控制在4.0、4.5、5.0、5.5、6.0和6.5的谷胱甘肽分批发酵过程,发现在pH 5.5时谷胱甘肽总产量最高。用前期研究建立的动力学模型模拟了不同pH (4.0~6.5)下的分批发酵过程,并从动力学角度解释了pH对细胞生长和谷胱甘肽合成的影响。  相似文献   

11.
A proportional-integral control system was used to control dissolved oxygen in a fermentor at constant shear and mass transfer conditions. Growth and antibiotic production in Streptomyces clavuligerus were studied at different dissolved oxygen levels during the fermentation. Three protocols were employed: no-oxygen control to provide a base case, oxygen controlled to a preset saturation level throughout the fermentation, and oxygen controlled at a high level only during the growth phase. The last protocol was aimed at optimizing the consumption of oxygen. Lower specific growth rates and cephamycin C yields were obtained when dissolved oxygen was controlled at 50% throughout the fermentation, compared to the base case. A 2.4-fold increase in the final cephamycin yield was observed when dissolved oxygen was controlled at saturation levels during the growth phase, compared to the experiments without dissolved oxygen control. This enhancement in yield was independent of the dissolved oxygen (DO) level after exponential growth, in the range of 50-100% saturation. The most effective control strategy, therefore, was to control DO only during active growth when the biosynthetic enzymes were probably synthesized.  相似文献   

12.
Two matrices have been assessed for their ability to immobilize Lactobacillus casei cells for lactic acid fermentation in whey permeate medium. Agar at 2% concentration was found to be a better gel than polyacrylamide in its effectiveness to entrap the bacterial cells to carry out batch fermentation up to three repeat runs. Of the various physiological parameters studied, temperature and pH were observed to have no significant influence on the fermentation ability of the immobilized organism. A temperature range of 40–50°C and a pH range of 4.5–6.0 rather than specific values, were found to be optimum when fermentation was carried out under stationary conditions. In batch fermentation ~90% conversion of the substrate (lactose) was achieved in 48 h using immobilized cell gel cubes of 4 × 2 × 2 mm size, containing 400 mg dry bacterial cells per flask and 4.5% w/v (initial) whey lactose content as substrate. However, further increase in substrate levels tested (>4.5% w/v) did not improve the process efficiency. Supplementation of Mg2+ (1 mM) and agricultural by-products (mustard oil cake, 6%) in the whey permeate medium further improved the acid production ability of the immobilized cells under study.  相似文献   

13.
Fermentations carried out at 450-L and 20-L scale to produce Fab’ antibody fragments indicated a serious problem to control levels of dissolved oxygen in the broth due to the large oxygen demand at high cell densities. Dissolved oxygen tension (DOT) dropped to zero during the induction phase and it was hypothesised that this could limit product formation due to inadequate oxygen supply. A gas blending system at 20-L scale was employed to address this problem and a factorial 22 experimental design was executed to evaluate independently the effects and interaction of two main engineering factors: agitation rate and DOT level (both related to mixing and oxygen transfer in the broth) on Fab’ yields. By comparison to the non-gas blending system, results in the gas blending system at same scale showed an increase in the production of Fab’ by 77% independent of the DOT level when using an agitation rate of 500 rpm level and by 50% at an agitation rate of 1,000 rpm with 30% DOT. Product localisation in the cell periplasm of >90% was obtained in all fermentations. Results obtained encourage further studies at 450-L scale initially, to evaluate the potential of gas blending for the industrial production of Fab’ antibody fragments.  相似文献   

14.
Microbial physiological responses resulting from inappropriate bioprocessing conditions may have a marked impact on process performance within any fermentation system. The influence of different pH-control strategies on physiological status, microbial growth and lactobionic acid production from whey by Pseudomonas taetrolens during bioreactor cultivations has been investigated for the first time in this work. Both cellular behaviour and bioconversion efficiency from P. taetrolens were found to be negatively influenced by pH-control modes carried out at values lower than 6.0 and higher than 7.0. Production schemes were also influenced by the operational pH employed, with asynchronous production from damaged and metabolically active subpopulations at pH values lower than 6.0. Moreover, P. taetrolens showed reduced cellular proliferation and a subsequent delay in the onset of the production phase under acidic conditions (pH?<?6.0). Unlike cultivations performed at 6.5, both pH-shift and pH-stat cultivation strategies performed at pH values lower than 6.0 resulted in decreased lactobionic acid production. Whereas the cellular response showed a stress-induced physiological response under acidic conditions, healthy functional cells were predominant at medium operational pH values (6.5–7.0). P. taetrolens thus displayed a robust physiological status at initial pH value of 6.5, resulting in an enhanced bioconversion yield and lactobionic acid productivity (7- and 4-fold higher compared to those attained at initial pH values of 4.5 and 5.0, respectively). These results have shown that pH-control modes strongly affected both the physiological response of cells and the biological performance of P. taetrolens, providing key information for bio-production of lactobionic acid on an industrial scale.  相似文献   

15.
This study investigated the effects of DO concentration on DHA fermentation and of DO-stat fed-batch fermentation using a pH control strategy, on 1,3-dihydroxyacetone (DHA) production. The results showed that DO-stat fed-batch fermentation with pH-shift control was the optimal bioprocess for DHA production. DO-stat fed-batch fermentation was carried out at 30% air saturation, and the culture pH was automatically maintained at pH 6.0 during the first 20 h and then shifted to pH 5.0 until the end of the fermentation. An optimal DHA concentration of 175.9 ± 6.7 g/L, with a production yield to glycerol of 0.87 ± 0.04 g/g, was obtained at 72 h of DO-stat fed-batch fermentation at 30°C in a 15 L fermenter.  相似文献   

16.
We optimized culture medium and batch-fed fermentation conditions to enhance production of an acetyl esterase from Pseudomonas sp. ECU1011 (PSAE). This enzyme enantioselectively deacetylates α-acetoxyphenylacetic acid. The medium was redesigned by single-factor and statistical optimization. The addition of ZnSO4 enhanced enzyme production by 37%. Yeast extract concentration was directly associated with the enzyme production. The fermentation was scaled up in a 5-l fermenter with the optimized medium, and the correlations between enzyme production and dissolved oxygen, pH, and feeding strategy were investigated. The fermentation process was highly oxygen-demanding, pH sensitive and mandelic acid-inducible. The fermentation pH was controlled at 7.5 by a pH and dissolved oxygen feedback strategy. Feeding mandelic acid as both a pH regulator and an enzyme inducer increased the enzyme production by 23%. The results of the medium redesign experiments were confirmed and explained in fed-batch culture experiments. Mathematical models describing the fermentation processes indicated that the enzyme production was strongly associated with cell growth. The optimized pH and dissolved oxygen stat fed-batch process resulted high volumetric production of PSAE (4166 U/l, 7.2-fold higher than the initial) without enantioselectivity decline. This process has potential applications for industrial production of chiral mandelic acid or its derivatives.  相似文献   

17.
The effect of oscillating dissolved oxygen tension (DOT) on the metabolism of an exopolysaccharide-producing bacteria (Azotobacter vinelandii) was investigated, particularly on the mean molecular weight (MMW) of the alginate produced. Sinusoidal DOT oscillations were attained by manipulating the oxygen and nitrogen partial pressures at the inlet of a 1.0 L working volume bioreactor. Periods of 1200, 2400, and 4000 s and average amplitudes between 1.0% and 2.2% DOT, with an oscillation axis fixed at 3% DOT, were tested. A culture carried out at constant 3% DOT was used as comparison. The average wave amplitude had an important effect on the maximum mean molecular weight (MMW(max)) of the alginate produced. The higher the amplitude, the lower the MMW(max). As the average wave amplitudes decreased from 2.2% to 1.0%, the MMW(max) increased from 64 to 240 KDa, respectively. Furthermore, at 3% constant DOT (0.0% of amplitude), a MMW(max) of 350 KDa was obtained. No important effect of the oscillating DOT on kinetics of biomass growth, alginate production, and sucrose consumption was observed, compared with constant DOT. The findings of this study point out that accurate DOT control is crucial if a particular molecular weight species of alginate needs to be produced, particularly in large fermentors, where bacteria are exposed to an oscillatory environment as a result of DOT gradients caused by the high viscosity of the broth and insufficient mixing.  相似文献   

18.
Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH   总被引:16,自引:0,他引:16  
Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.  相似文献   

19.
Weissella paramesenteroides DX has been shown to produce a 4450-Da class IIa bacteriocin, weissellin A, composed of 43 amino acids with the sequence KNYGNGVYCNKHKCSVDWATFSANIANNSVAMAGLTGGNAGN. The bacteriocin shares 68% similarity with leucocin C from Leuconostoc mesenteroides. Computational analyses predict that the bacteriocin is a hydrophobic molecule with a beta-sheet type conformation. Weissellin A exhibited various levels of activity against all gram-positive bacteria tested, but was not active against Salmonella enterica Enteritidis. The antimicrobial activity was not associated with target-cell lysis. The bacteriocin retained activity after exposure to 121 °C for 60 min or to −20 °C for 6 months, and to pH 2.0-10.0. It was not sensitive to trypsin, α-chymotrypsin, pepsin and papain, but was inactivated by proteinase K. At a dissolved oxygen concentration of 50%, weissellin A was produced with growth-associated kinetics. The properties of weissellin A make this bacteriocin a potentially suitable agent for food and feed preservation.  相似文献   

20.
An Azotobacter vinelandii mutant lacking alginate-lyase (SML2) and the wild type (ATCC 9046) were used to discriminate between the roles of the polymerase complex and alginate-lyase in the synthesis of alginate in cultures conducted under controlled dissolved oxygen tension (DOT). To avoid the presence of pre-synthesized alginates, all cultures were inoculated with washed cells. For cultures carried out at 3% DOT using the mutant, a well defined family of alginates of high mean molecular weight (MMW) were obtained (985 kDa). Under 1% and 5% DOT, the mutant produced unique families of alginates with lower MMW (150 and 388 kDa). A similar behavior was observed using the wild type: a production of well defined families of alginates of high MMW at 3% DOT (1,250 kDa) and lower MMW at 1% and 5% DOT (370 and 350 kDa). At the end of the ATCC 9046 fermentations, alginate was depolymerized by the action of lyases. Overall, the evidence indicated that polymerization of alginate is carried out by producing families of polysaccharide in a narrow MMW range, and that it is highly dependent on DOT. The role of alginate-lyase (present in the wild type) is restricted to a post-polymerization step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号