首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Expression of human immunoglobulin E epsilon chain cDNA in E. coli.   总被引:5,自引:1,他引:4       下载免费PDF全文
Using the cDNA of human epsilon chain, three expression plasmids that code directly the constant portion of the epsilon chain (C epsilon 1-C epsilon 4, C epsilon 2-C epsilon 4 and C epsilon 3-C epsilon 4 domains) were constructed. These epsilon chain peptides were synthesized in E. coli under the control of the trp promoter-operator. The bacterially produced peptides have the antigenicity of human epsilon chain and gave the molecular weights equal to the values calculated from the amino acid sequence of the constructed plasmids.  相似文献   

3.
The molecular events of membrane translocation and insertion have been investigated using a number of different model proteins. Each of these proteins has specific features that allow interaction with the membrane components which ensure that the proteins reach their specific local destination and final conformation. This review will give an overview on the best-characterized proteins studied in the bacterial system and emphasize the distinct aspects of the pathways.  相似文献   

4.
Control of uracil transport by cyclic AMP in E. coli   总被引:1,自引:0,他引:1  
  相似文献   

5.
Spheroplasts were disrupted with 0.2% Brij 58 and the separation of intact cells, spheroplasts, disrupted spheroplasts, fragmented membrane, and supernatant was performed on a linear 40~55% sucrose gradient. About half an amount of nucleic acid components was distributed in disrupted spheroplast fractions, while only a small amount of protein components was found in these fractions.

DNA polymerase in the fragmented membrane fraction incorporated 3H-TTP more rapidly than that in the supernatant fraction for the first 5 to 6 min, and then the incorporation rate decreased, while DNA polymerase in the supernatant fraction incorporated 3H-TTP linearly up to 20 min when native DNA was used as a primer. The former required native DNA as a primer and showed little activity towards denatured DNA, while the latter incorporated 3H-TTP at a similar rate to both the primer DNA’s.

DNA polymerase of the fragmented membrane fraction synthesized various sizes of DNA from short to a size of primer when native DNA was used as a primer, while when denatured DNA was used, products were only short. DNA polymerase of the supernatant fraction synthesized various sizes of DNA when both native and denatured DNA’s were used as primers.  相似文献   

6.
《Phytochemistry》1986,25(2):401-404
Lipids in developing as well as mature seeds of Lunaria annua are mainly composed of triacylglycerols which contain almost exclusively nervonoyl (24:1), erucoyl (22:1) and oleoyl (18:1) moieties. Maturation of the seeds proceeds with successive reduction in the relative proportions of phospholipids and glycolipids as well as linoleoyl (18:2) and linolenoyl (18:3) moieties in the total lipids. Concomitantly, the most predominant fraction of triacylglycerols, which contain nervonoyl and erucoyl moieties at the sn-1,3 positions and oleoyl moieties at the sn-2 position, are accumulated.  相似文献   

7.
Particulate (15,000g) fractions from developing seeds of honesty (Lunaria annua L.) and mustard (Sinapis alba L.) synthesize radioactive very long chain monounsaturated fatty acids (gadoleic, erucic, and nervonic) from [1-14C]oleoyl-CoA and malonyl-CoA or from oleoyl-CoA and [2-14C]malonyl-CoA. The very long chain monounsaturated fatty acids are rapidly channeled to triacylglycerois and other acyl lipids without intermediate accumulation of their CoA thioesters. When [1-14C]oleoyl-CoA is used as the radioactive substrate, phosphatidylcholines and other phospholipids are most extensively radiolabeled by oleoyl moieties rather than by very long chain monounsaturated acyl moieties. When [2-14C]malonyl-CoA is used as the radioactive substrate, no radioactive oleic acid is formed and the newly synthesized very long chain monounsaturated fatty acids are extensively incorporated into phosphatidylcholines and other phospholipids as well as triacylglycerols. The pattern of labeling of the key intermediates of the Kennedy pathway, e.g. lysophosphatidic acids, phosphatidic acids, and diacylglycerols by the newly synthesized very long chain monounsaturated fatty acids is consistent with the operation of this pathway in the biosynthesis of triacylglycerols.  相似文献   

8.
9.
A membrane filter-Endo agar method for enumerating Escherichia coli as distinct from other coliforms in drinking water was developed. Membranes containing coliform colonies are transferred to nutrient agar containing 4-methyl umbelliferyl-beta-D-glucuronide (MUG) and incubated at 35 degrees C for 4 h. The MUG is hydrolyzed by the glucuronidase of E. coli and the fluorogenic product is visualized. The method recovered 98% of E. coli without false positives and is proposed as an additional test in routine water examination for the detection of pollution.  相似文献   

10.
A membrane filter-Endo agar method for enumerating Escherichia coli as distinct from other coliforms in drinking water was developed. Membranes containing coli-form colonies are transferred to nutrient agar containing 4-methyl umbelliferyl-β-d-glucuronide (MUG) and incubated at 35°C for 4 h. The MUG is hydrolyzed by the glucuronidase of E. coli and the fluorogenic product is visualized. The method recovered 98% of E. coli without false positives and is proposed as an additional test in routine water examination for the detection of pollution.  相似文献   

11.
The phospholipid composition of the butyric acid-producing clostridia is responsive to the degree of enrichment of the lipids with cis-unsaturated fatty acids. When Clostridium butyricum and Clostridium beijerinckii are grown on oleic acid in media devoid of biotin, the acyl and alk-1-enyl chains of the phospholipids become highly enriched with 18:1 and C19-cyclopropane. Under these conditions there is a marked increase in the glycerol acetals of the major plasmalogens of these organisms. We have grown both species on mixtures of palmitate and oleate in the absence of biotin. The alk-1-enyl chains were highly enriched with C18-unsaturated and C19-cyclopropane residues at all but the highest ratios of palmitate to oleate (80:20, w/w) added to the medium. At ratios of palmitate to oleate greater than or equal to 40:60, the saturated acid was incorporated predominantly into the phospholipid acyl chains in both organisms. The effects of increasing unsaturation of the acyl chains as the ratio of oleate to palmitate was increased was examined in C. butyricum. In cells grown on mixtures of palmitate and oleate equal to or exceeding 40% palmitate, the ratio of glycerol acetal lipid to total phosphatidylethanolamine (PE) was relatively constant. As the proportion of oleic acid added to the medium was increased, the ratio of glycerol acetal lipid to PE increased from 0.7 to 2.0. Thus the ratio of the polar lipids appears to respond to the content of phospholipids that contain two unsaturated chains. The fraction of PE present as plasmalogen remained relatively stable (0.82 +/- 0.05) at varying ratios of medium oleic and palmitic acids. Both the glycerol acetal of ethanolamine plasmalogen, and ethanolamine plasmalogen, are shown to be 80% or more in the outer monolayer of the cell membrane. These two polar lipids represent approx. 50% of the phospholipids in cells grown on exogenous fatty acid. The bulk of the remainder is polyglycerol phosphatides. We suggest that the ability of both species to grow with highly unsaturated membranes is related to their ability to modulate their polar lipid composition.  相似文献   

12.
13.
New plasmids containing partially deleted lacZ genes were obtained. These genes determine high-level synthesis of polypeptides of molecular mass 43-45 and 49-51 kD under the control of the lambda phage PR-promoter; inspite of the deletion, E. coli cells carrying new plasmids were found to possess beta-galactosidase activity. Use of these plasmids as new expression vectors is suggested.  相似文献   

14.
The photoinduced reaction of phenylalanyl-tRNA synthetase (E.C.6.1.1.20) from E.coli MRE-600 with tRNAphe containing photoreative p-N3-C6H4-NHCOCH2-group attached to 4-thiouridine sU8 (azido-tRNAphe) was investigated. The attachment of this group does not influence the dissociation constant of the complex of Phe-tRNAphe with the enzyme, however it results in sevenfold increase of Km in the enzymatic aminoacylation of tRNAphe. Under irradiation at 300 nm at pH 5.8 the covalent binding of [14C]-Phe-azido-tRNAphe to the enzyme takes place 0.3 moles of the reagent being attached per mole of the enzyme. tRNA prevents the reaction. Phenylalanine, ATP,ADP,AMP, adenosine and pyrophosphate (2.5 xx 10(-3) M) don't affect neither the stability of the tRNA-enzyme complex nor the rate of the affinity labelling. The presence of the mixture of either phenylalanine or phenylalaninol with ATP as well as phenylalaninol adenylate exhibits 50% inhibition of the photoinduced reaction. Therefore, the reaction of [14C]-Phe-azido-tRNA with the enzyme is significantly less sensitive to the presence of the ligands than the reaction of chlorambucilyl-tRNA with the reactive group attached to the acceptor end of the tRNA studied in 1. It has been concluded that the kinetics of the affinity labelling does permit to discriminate the influence of the low molecular weight ligands of the enzyme on the different sites of the tRNA enzyme interaction.  相似文献   

15.
The photoinduced reaction of phenylalanyl-tRNA synthetase (E.C. 6.1.1.20) from E.coli MRE-600 with tRNAphe containing photoreative p-N3-C6H4-NHCOCH2-group attached to 4-thiouridine sU8 (azido-tRNAphe) was investigated. The attachment of this group does not influence the dissociation constant of the complex of Phe-tRNAphe with the enzyme,however it results in sevenfold increase of Km in the enzymatic aminoacylation of tRNAphe. Under irradiation at 300 nm at pH 5.8 the covalent binding of [14C]-Phe-azido-tRNAphe to the enzyme takes place 0.3 moles of the reagent being attached per mole of the enzyme. tRNA prevents the reaction. Phenylalanine, ATP,ADP,AMP, adenosine and pyrophosphate (2.5 × x 10−3 M) don't affect neither the stability of the tRNA-enzyme complex nor the rate of the affinity labelling. The presence of the mixture of either phenylalanine or phenylalaninol with ATP as well as phenylalaninol adenylate exibits 50% inhibition of the photoinduced reaction. Therefore, the reaction of [14C]-Phe-azido-tRNA with the enzyme is significantly less sensitive to the presence of the ligands than the reaction of chlorambucilyl-tRNA with the reactive group attached to the acceptor end of the tRNA studied in 1. It has been concluded that the kinetics of the affinity labelling does permit to discriminate the influence of the low molecular weight ligands of the enzyme on the different sites of the tRNA - enzyme interaction.  相似文献   

16.
The functional organization of prokaryotic cell membranes, which is essential for many cellular processes, has been challenging to analyze due to the small size and nonflat geometry of bacterial cells. Here, we use single-molecule fluorescence microscopy and three-dimensional quantitative analyses in live Escherichia coli to demonstrate that its cytoplasmic membrane contains microdomains with distinct physical properties. We show that the stability of these microdomains depends on the integrity of the MreB cytoskeletal network underneath the membrane. We explore how the interplay between cytoskeleton and membrane affects trans-membrane protein (TMP) diffusion and reveal that the mobility of the TMPs tested is subdiffusive, most likely caused by confinement of TMP mobility by the submembranous MreB network. Our findings demonstrate that the dynamic architecture of prokaryotic cell membranes is controlled by the MreB cytoskeleton and regulates the mobility of TMPs.  相似文献   

17.
18.
Bacteria need to be able to adapt to sudden changes in their environment, including drastic changes in the surrounding osmolarity. As part of this adaptation, the cells adjust the composition of their cytoplasmic membrane. Recent studies have shown that ubiquinones, lipid soluble molecules involved in cell respiration, are overproduced by bacteria grown in hyperosmotic conditions and it is thus believed that these molecules can provide with osmoprotection. Hereby we explore the mechanisms behind these observations. Liposomes with a lipid headgroup composition mimicking that of the cytoplasmic membrane of E. coli are used as suitable models. The effect of ubiquinone-10 (Q10) on water transport across the membranes is characterized using a custom developed fluorescence-based experimental approach to simultaneously determine the membrane permeability coefficient and estimate the elastic resistance of the membrane towards deformation. It is shown that both parameters are affected by the presence of ubiquinone-10. Solanesol, a molecule similar to Q10 but lacking the quinone headgroup, also provides with osmoprotection although it only improves the resistance of the membrane against deformation. The fluorescence experiments are complemented by cryogenic transmission electron microscopy studies showing that the E. coli membrane mimics tend to flatten into spheroid oblate structures when osmotically stressed, suggesting the possibility of lipid segregation. In agreement with its proposed osmoprotective role, the flattening process is hindered by the presence of Q10.  相似文献   

19.
We have previously described that the N-glycosylation process was accompanied by the release of oligosaccharide-phosphates and neutral oligosaccharides. The relationship between oligosaccharide-P-P-dolichol and its metabolic products (glycoproteins, oligosaccharide-phosphates and neutral oligosaccharides) was investigated by analysing the structure of the oligosaccharide moieties and the kinetic behaviour of the various species in pulse and pulse/chase experiments. For these studies, a glycosylation mutant of Chinese hamster ovary cells (B3F7) which does not synthesize mannosylphosphoryldolichol was utilized. Evidence was obtained for the presence of two pools of oligosaccharide-P-P-dolichol which have different fates. One pool is not glucosylated, is rapidly labelled and immediately chased by mannose, and generates the oligosaccharide-phosphate species. The second pool is glucosylated, exhibits a lag time (5-10 min) prior to being labelled, and is utilized in the glycosylation of proteins and in the production of neutral oligosaccharides. We postulate that the cleavage of non-glycosylated lipid intermediates generating oligosaccharide-phosphates represents a 'bypass' in the dolichol cycle which allows direct regeneration of dolichyl phosphate. The other metabolic fate of non-glucosylated oligosaccharide-lipids, glucosylation, results in their use as effective substrates for the glycosylation of proteins or in the generation of neutral oligosaccharides.  相似文献   

20.
This study examines certain membrane-related aspects of oxygen poisoning in Escherichia coli K1060 (fabB fadE lacI) and its parent strain, K-12 Ymel. Cells were grown to exponential or stationary phase in a minimal medium and exposed to air plus 300 lb/in2 of O2 as a suspension in minimal salts. After an initial lag, both strains lost viability with apparent first-order kinetics. Hypebaric oxygen was more toxic to cells harvested during the exponential phase of growth than to cells harvested from the stationary phase of growth for both strains K-12 Ymel and K1060. Control suspensions exposed to air plus 300 lb/in2 of N2 did not lose viability during a 96-h exposure. The sensitivity of the unsaturated fatty acid auxotroph, strain K1060, to hyperbaric oxygen increased as the degree of unsaturation of the fatty acid supplement increased. Cells grown with a cyclopropane fatty acid (9,10=methylenoctadecanoate) were the most resistant; cells grown with a monounsaturated fatty acid (oleate) were intermediate; and those grown with polyunsaturated fatty acids (linoleate and linolenate) were most sensitive to hyperbaric oxygen. The parent strain, K-12 Ymel, lost viability in hyperbaric oxygen most similarly to strain K1060 supplemented with oleate. To determine the relative effect of hyperbaric oxygen on the survival of E. coli with saturated membranes, substrains of K1060 were selected for growth on 12-methyltetrade-canoate or on 9 or 10-monobromostearate. Substrains grown with a saturated fatty acid supplement were equally or more sensitive to hyperbaric oxygen than when the same substrains were grown with a cyclopropane fatty acid supplement. The lipid acyl chain composition was determined in E. coli K1060 before and after exposure to hyperbaric oxygen or hyperbaric nitrogen. The proportion of nonsaturated acyl chain lipid of either the oleate- or the 9,10-methyleneoctade-canoate-supplemented K1060 remained unchanged after hyperbaric gas exposure. In strain K1060 supplemented with linoleate and grown to stationary phase, however, the relative unsaturated acyl chain content after hyperbaric exposure decreased in both gases. This finding prompted an investigation of the role of lipid oxidation in hyperbaric oxygen toxicity. Assays of potential lipid oxidation products were performed with linoleate-grown cells. The lipid hydroperoxide and peroxide content of the lipid extract increased by 6.9 times after 48 h of air plus 300 lb/in2 of O2; malondialdehyde and fluorescent complex lipid oxidation products showed much smaller or no changes. Lipid extracts from hyperbaric oxygen-exposed cells were not toxic to viable E. coli K1060, nor did they increase the rate of loss of viability in cells simultaneously exposed to hyperbaric oxygen. Linoleic acid hydroperoxide at 1.0 mM had no effect on the viability of E. coli K-12 Ymel and only marginally decreased the viability of E. coli K1060 supplemented with linoleate. We conclude that the kinetics of oxygen toxicity in E...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号