首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphoinositides serve as direct local modulators or recruiters of the protein machineries that control membrane trafficking. In the past year, examples of phosphoinositide effectors include regulators of small GTPases in coat assembly, dynamin in clathrin coated vesicle formation and FYVE finger proteins in endocytic membrane traffic. A novel phosphoinositide appears to regulate effectors involved in the formation of multivesicular endosomes.  相似文献   

2.
Cargo proteins moving along the secretory pathway are sorted at the TGN (trans-Golgi network) into distinct carriers for delivery to the plasma membrane or endosomes. Recent studies in yeast and mammals have shown that formation of these carriers is regulated by PtdIns(4)P. This phosphoinositide is abundant at the TGN and acts to recruit components required for carrier formation to the membrane. Other phosphoinositides are also present on the TGN, but the extent to which they regulate trafficking is less clear. Further characterization of phosphoinositide kinases and phosphatases together with identification of new TGN-associated phosphoinositide-binding proteins will reveal the extent to which different phosphoinositides regulate TGN trafficking, and help define the molecular mechanisms involved.  相似文献   

3.
Krauss M  Haucke V 《FEBS letters》2007,581(11):2105-2111
Phosphoinositides serve as important spatio-temporal regulators of intracellular trafficking and cell signalling events. In addition to their recognition by specific phosphoinositide binding domains present within cytoplasmic adaptor proteins or membrane integral channels and transporters phosphoinositides may affect membrane transport by eliciting conformational changes within proteins or by regulating enzymatic activities. During adaptor-mediated membrane traffic phosphoinositides form part of coincidence detection systems that aid in targeting pools of specific phosphoinositides to select intracellular transport pathways. In this review, we discuss potential mechanisms for conferring selectivity onto the phosphoinositide code as well as possible avenues for future research.  相似文献   

4.
Phosphoinositide plays a critical role not only in generating second messengers, such as inositol 1,4,5-trisphosphate and diacylglycerol, but also in modulating a variety of cellular functions including cytoskeletal organization and membrane trafficking. Many inositol lipid kinases and phosphatases appear to regulate the concentration of a variety of phosphoinositides in a specific area, thereby inducing spatial and temporal changes in their availability. For example, local concentration changes in phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in response to extracellular stimuli cause the reorganization of actin filaments and a change in cell shape. PI(4,5)P(2) uncaps the barbed end of actin filaments and increases actin nucleation by modulating a variety of actin regulatory proteins, leading to de novo actin polymerization. PI(4,5)P(2) also plays a key role in membrane trafficking processes. In endocytosis, PI(4,5)P(2) targets clathrin-associated proteins to endocytic vesicles, leading to clathrin-coated pit formation. On the contrary, PI(4,5)P(2) must be dephosphorylated when they shed clathrin coats to fuse endosome. Thus, through regulating actin cytoskeleton organization and membrane trafficking, phosphoinositides play crucial roles in a variety of cell functions such as growth, polarity, movement, and pattern formation.  相似文献   

5.
Lipids were long considered to be passive passengers of carrier vesicles with the single role of sealing the transport container. We now know that specific phospholipids are required for efficient fusion, while others facilitate budding and fission. Moreover, the various polyphosphoinositides assist in the recruitment from the cytosol of proteins of the transport machinery. Finally, the segregation of membrane lipids into different fluid phases appears to serve as a 'lipid raft' mechanism for protein sorting at various stages of the secretory and endocytic pathways. The current challenge is to understand how proteins control the metabolism and subcellular localization, and thereby the activity, of the various lipids.  相似文献   

6.
During interphase the transport of material between different intracellular organelles requires accurate regulation of fusiogenic domains. Recent studies on hepatic endosomes indicated that compartmentalized Cdk2-cyclin E complexes act by braking fusion events. These Cdk2 complexes integrate tyrosine phosphorylation and dephosphorylation inputs, resulting in the control of the number of rounds of fusion at discrete domains. This leads to changes in the intracellular location of internalized receptors and ultimately their biological response.  相似文献   

7.
Transport of cargo through and from the Golgi complex is mediated by vesicular carriers and transient tubular connections. Two classes of vesicle have been implicated in the biosynthetic or anterograde membrane traffic of this organelle. Both classes of vesicle are coated on the cytoplasmic surface with proteins, of which at least one component is related. Tubular connections also enable exchange of material between membrane-bounded compartments associated with the Golgi complex, most obviously in cells that have been treated with the drug, brefeldin A. Coat proteins appear to be involved in the regulation of these transport processes. Their putative functions include sorting of cargo, as well as regulation of budding, fusion or targeting of the membrane carriers.  相似文献   

8.
We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.  相似文献   

9.
E Sztul  A Kaplin  L Saucan  G Palade 《Cell》1991,64(1):81-89
We have isolated a population of vesicular carriers involved in the transport (transcytosis) of proteins from the basolateral to the apical plasma membrane of hepatocytes. The obtained fraction was enriched in compartments containing known transcytosed proteins and depleted in elements of the secretory pathway, Golgi elements, basolateral plasma membrane, as well as early endosomal components. The fraction was analyzed by biochemical and immunological procedures. Antibodies raised against the proteins in the fraction recognized a single 108K antigen. Based on its subcellular distribution, the 108K antigen may represent a novel marker for transcytotic vesicular carriers.  相似文献   

10.
Phosphoinositide 3 kinases (PI3Ks)*Abbreviation used in this paper: PI3K, phosphoinositide 3 kinase. are known as regulators of phagocytosis. Recent results demonstrate that class I and III PI3Ks act consecutively in phagosome formation and maturation, and that their respective products, phosphatidylinositol 3,4,5-trisphosphate (PI[3,4,5]P(3)) and phosphatidylinositol 3-phosphate (PI[3]P), accumulate transiently at different stages. Phagosomes containing Mycobacterium tuberculosis do not acquire the PI(3)P-binding protein EEA1, which is required for phagosome maturation. This suggests a possible mechanism of how this microorganism evades degradation in phagolysosomes.  相似文献   

11.
Cellular engulfment of particles, cells or solutes displaces large domains of plasma membrane into intracellular membranous vacuoles. This transfer of membrane is accompanied by major transitions of the phosphoinositide (PI) species that comprise the cytoplasmic face of membrane bilayers. Mapping of membrane PIs during engulfment reveals distinct patterns of protein and PI distributions associated with each stage of engulfment, which correspond with activities that regulate the actin cytoskeleton, membrane movements and vesicle secretion. Experimental manipulation of PI chemistry during engulfment indicates that PIs integrate organelle identity and orient signal transduction cascades within confined subdomains of membrane. These pathways are exploited by microbial pathogens to direct or redirect the engulfment process.  相似文献   

12.
13.
Small GTP-binding proteins of the rab family have been implicated as regulators of membrane traffic along the biosynthetic and endocytic pathways in eukaryotic cells. We have investigated the localization and function of rab8, closely related to the yeast YPT1/SEC4 gene products. Confocal immunofluorescence microscopy and immunoelectron microscopy on filter-grown MDCK cells demonstrated that, rab8 was localized to the Golgi region, vesicular structures, and to the basolateral plasma membrane. Two-dimensional gel electrophoresis showed that rab8p was highly enriched in immuno-isolated basolateral vesicles carrying vesicular stomatitis virus-glycoprotein (VSV-G) but was absent from vesicles transporting the hemagglutinin protein (HA) of influenza virus to the apical cell surface. Using a cytosol dependent in vitro transport assay in permeabilized MDCK cells we studied the functional role of rab8 in biosynthetic membrane traffic. Transport of VSV-G from the TGN to the basolateral plasma membrane was found to be significantly inhibited by a peptide derived from the hypervariable COOH-terminal region of rab8, while transport of the influenza HA from the TGN to the apical surface and ER to Golgi transport were unaffected. We conclude that rab8 plays a role in membrane traffic from the TGN to the basolateral plasma membrane in MDCK cells.  相似文献   

14.
真核细胞内膜泡运输的分子机制   总被引:1,自引:0,他引:1  
真核细胞内一些蛋白质需靠膜泡进行定向运输,膜泡是在外衣蛋白的作用下形成的,根据外衣蛋白的不同,膜泡分为笼蛋白,COPⅠ和COPⅡ外衣膜泡,这些外衣膜泡分别在细胞内不同供膜(donor membrane)处形成,因为被运输蛋白具有分选信号可与供膜上相应的受体结合,所以能被包裹在特异的膜泡之中,在膜泡形成过程中,外衣蛋白在“芽生”膜泡的细胞质侧组装成笼状外衣,帮助“芽生”膜泡从供膜处脱落,一旦笼状外衣膜泡脱离供膜,笼状外衣蛋白便发生解聚而成为无衣膜泡,无衣膜泡在Rab蛋白的调控下可定向运输蛋白质,而解聚后的外衣蛋白可重新介导新的外衣膜泡形成。  相似文献   

15.
Following endocytosis, ubiquitinated signaling receptors are incorporated within intraluminal vesicles of forming multivesicular endosomes. These vesicles then follow the pathway from early to late endosomes, remaining within the endosomal lumen, and are eventually delivered to lysosomes, where they are degraded together with their protein cargo. However, intraluminal vesicles do not always end up in lysosomes for degradation; they can also fuse back with the limiting membrane of late endosomes. This route, which might be regulated by lyso-bisphosphatidic acid and its putative effector Alix, can be hijacked by the anthrax toxin and vesicular stomatitis virus and is presumably exploited by proteins and lipids that transit through intraluminal vesicles. Alternatively, these vesicles can be released extracellularly, like HIV in macrophages, upon fusion of endosomes or lysosomes with the plasma membrane.  相似文献   

16.
Intracellular movement of proteins and lipids between organelles is usually described in terms of cargo, carriers, traffic and docking, familiar terms that imply parallels to human activities. Over the past century, scientists have been criticized for constructing hypotheses that reflect too much of their current political and cultural values. In this article, concepts of membrane traffic are re-examined to see whether they reflect the cell’s view of the world or our own.  相似文献   

17.
Intracellular movement of proteins and lipids between organelles is usually described in terms of cargo, carriers, traffic and docking, familiar terms that imply parallels to human activities. Over the past century, scientists have been criticized for constructing hypotheses that reflect too much of their current political and cultural values. In this article, concepts of membrane traffic are re-examined to see whether they reflect the cell’s view of the world or our own.  相似文献   

18.
Genetic and biochemical analysis of vesicular traffic in yeast.   总被引:15,自引:0,他引:15  
Secretory, vacuolar and membrane protein transport in yeast occurs by processes that are highly conserved in eukaryotic cells. Recent years have seen a proliferation of approaches to the study of vesicular traffic, and in certain instances key breakthroughs have been achieved through the application of genetic and biochemical methods that are well suited to yeast as an experimental organism. The availability of the genetic approach has led to molecular insights concerning the mechanisms of vesicle biogenesis, targeting and fusion.  相似文献   

19.
20.
Phosphoinositides (PIs) undergo phosphorylation/dephosphorylation cycles through organelle-specific PI kinases and PI phosphatases that lead to distinct subcellular distributions of the individual PI species. Specific PIs control the correct timing and location of many trafficking events. Their ultimate mode of action is not always well defined, but it includes localized recruitment of transport machinery, allosteric regulation of PI-binding proteins and changes in the physical properties of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号