首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheffer A  Ulrich H 《Biochemistry》2011,50(11):1763-1770
Nicotinic acetylcholine receptors (nAChRs) were studied in detail in the past regarding their interaction with therapeutic and drug addiction related compounds. Using fast kinetic whole-cell recording, we have now studied effects of tacrine, an agent used clinically to treat Alzheimer's disease, on currents elicited by activation of rat α(3)β(4) nAChR heterologously expressed in KXα3β4R2 cells. Characterization of receptor activation by nicotine used as agonist revealed a K(d) of 23 ± 0.2 μM and 4.3 ± 1.3 for the channel opening equilibrium constant, Φ(-1). Experiments were performed to investigate whether tacrine is able to activate the α(3)β(4) nAChR. Tacrine did not activate whole-cell currents in KXα3β4R2 cells but inhibited receptor activity at submicromolar concentration. Dose-response curves obtained with increasing agonist or inhibitor concentration revealed competitive inhibition of nAChRs by tacrine, with an apparent inhibition constant, K(I), of 0.8 μM. The increase of Φ(-1) in the presence of tacrine suggests that the drug stabilizes a nonconducting open channel form of the receptor. Binding studies with TCP and MK-801 ruled out tacrine binding to common allosteric sites of the receptor. Our study suggests a novel mechanism for action of tacrine on nAChRs besides inhibition of acetylcholine esterase.  相似文献   

2.
In this study, we evaluate the effects of (3β)‐3‐[2‐(diethylamino)ethoxy]androst‐5‐en‐17‐one dihydrochloride (U18666A), a cholesterol synthesis/transporter inhibitor, on selected human neuronal nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the SH‐EP1 cell line using whole‐cell patch‐clamp recordings. The results indicate that with 2‐min pretreatment, U18666A inhibited different nAChR subtypes with a rank‐order of potency (IC50 of whole‐cell peak current): α4β2 (8.0 ± 3.0 nM) > α3β2 (1.7 ± 0.4 μM) > α4β4 (26 ± 7.2 μM) > α7 (> 100 μM), suggesting this compound is more selective to α4β2‐nAChRs. Thus, the pharmacological profiles and mechanisms of U18666A acting on α4β2‐nAChRs were investigated in detail. U18666A suppresses both peak and steady state components of whole‐cell currents mediated by human α4β2‐nAChRs in response to nicotine. In nicotine‐induced concentration–response curves, U18666A reduces nicotine‐induced current at maximally effective agonist concentrations without influencing nicotine’s EC50 value, suggesting a non‐competitive inhibition. U18666A‐induced inhibition of nAChR function is concentration‐, voltage‐, and use‐dependent, suggesting an open channel block. Taken into consideration of ~10 000‐fold enhancement of the potency of U18666A after 2‐min pre‐treatment, this compound also likely inhibits α4β2‐nAChRs through a close channel block. In addition, the U18666A‐induced inhibition in α4β2‐nAChRs is not mediated by either increased receptor endocytosis or altered cell cholesterol. These data indicate that U18666A is a potent antagonist of α4β2‐nAChRs and may be useful as a tool in the functional characterization and pharmacological profiling of nAChRs, as well as a potential candidate for smoking cessation.  相似文献   

3.
In the present study, we have electrophysiologically characterized native nicotinic acetylcholine receptors (nAChRs) in human chromaffin cells of the adrenal gland as well as their contribution to the exocytotic process. α-Conotoxin AuIB blocked by 14 ± 1% the acetylcholine (ACh)-induced nicotinic current. α-Conotoxin MII (α-Ctx MII) exhibited an almost full blockade of the nicotinic current at nanomolar concentrations (IC(50)=21.6 nM). The α6*-preferring α-Ctx MII mutant analogs, α-Ctx MII[H9A,L15A] and α-Ctx MII[S4A,E11A,L15A], blocked nAChR currents with an IC(50) of 217.8 and 33 nM, respectively. These data reveal that nAChRs in these cells include the α6* subtype. The washout of the blockade exerted by α-conotoxin BuIA (α-Ctx BuIA; 1 μM) on ACh-evoked currents was slight and slow, arguing in favor of the presence of a β4 subunit in the nAChR composition. Exocytosis was almost fully blocked by 1 μM α-Ctx MII, its mutant analogs, or α-Ctx BuIA. Finally, the fluorescent analog Alexa Fluor 546-BuIA showed distinct staining in these cells. Our results reveal that α6β4* nAChRs are expressed and contribute to exocytosis in human chromaffin cells of the adrenal gland, the main source of adrenaline under stressful situations.  相似文献   

4.
Nicotinic acetylcholine receptors (nAChRs) are the binding sites for nicotinoid drugs, such as nicotine and epibatidine, and are the molecular targets of the selectively insecticidal neonicotinoids. In this study we report the full length cDNA cloning of the three Ctenocephalides (C.) felis (cat flea) nAChR α subunits Cfα1, Cfα2, and Cfα3. When expressed in Xenopus oocytes as hybrid receptors with the Gallus gallus (chicken) β2 (Ggβ2) subunit, these cat flea α subunits formed acetylcholine-responsive ion channels. Acetylcholine-evoked currents of Cfα2/Ggβ2 were resistant to α-bungarotoxin, while those of Cfα1/Ggβ2 were sensitive to this snake toxin. The pharmacological profiles of Cfα1/Ggβ2, Cfα2/Ggβ2 and the chicken neuronal receptor Ggα4/Ggβ2 for acetylcholine, two nicotinoids and 6 insecticidal neonicotinoids were determined and compared. Particularly remarkable was the finding that Cfα1/Ggβ2 was far more sensitive to acetylcholine, nicotine and neonicotinoid agonists than either Cfα2/Ggβ2 or Ggα4/Ggβ2: for the anti flea neonicotinoid market compound imidacloprid the respective EC??s were 0.02 μM, 1.31 μM and 10 μM. These results were confirmed for another insect species, Drosophila melanogaster, where the pharmacological profile of the Dmα1 and Dmα2 subunits as hybrid receptors with Ggβ2 in Xenopus oocyte expressions resulted in a similar sensitivity pattern as those identified for the C. felis orthologs. Our results show that at least in a Ggβ2 hybrid receptor setting, insect α1 subunits confer higher sensitivity to neonicotinoids than α2 subunits, which may contribute in vivo to the insect-selective action of this pesticide class.  相似文献   

5.
Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.  相似文献   

6.
《Journal of Physiology》1998,92(3-4):309-316
The α7-nicotinic receptor (nAChR)-selective agonist choline and nAChR-subtype-selective antagonists led to the discovery that activation of both α7 and α4β2 nAChRs located in CA1 interneurons in slices taken from the rat hippocampus facilitates the tetrodotoxin (TTX)-sensitive release of γ-aminobutyric acid (GABA). Experiments carried out in cultured hippocampal neurons not only confirmed that preterminal α7 and α4β2 nAChRs modulate the TTX-sensitive release of GABA, but also demonstrated that evoked release of GABA is reduced by rapid exposure of the neurons to acetylcholine (ACh, 10 μM-1 mM) in the presence of the muscarinic receptor antagonist atropine (1 μM). This effect of ACh, which is fully reversible and concentration-dependent, is partially blocked by superfusion of the cultured neurons with external solution containing either the α7-nAChR-selective antagonist methyllycaconitine (MLA, 1 nM) or the α4β2-nAChR-selective antagonist dihydro-β-erythroidine (DHβE, 100 nM). A complete blockade of ACh-induced reduction of evoked release of GABA was achieved only when the neurons were perfused with external solution containing both MLA and DHβE, suggesting that activation of both α7 and α4β2 nAChRs modulates the evoked release of GABA from hippocampal neurons. Such mechanisms may account for the apparent involvement of nAChRs in the psychological effects of tobacco smoking, in brain disorders (e.g., schizophrenia and epilepsy), and in physiological processes, including cognition and nociception.  相似文献   

7.
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate synaptic transmission in the muscle and autonomic ganglia and regulate transmitter release in the brain. The nAChRs composed of α7 subunits are also expressed in non-excitable cells to regulate cell survival and proliferation. Up to now, functional α7 nAChRs were found exclusively on the cell plasma membrane. Here we show that they are expressed in mitochondria and regulate early pro-apoptotic events like cytochrome c release. The binding of α7-specific antibody with mouse liver mitochondria was revealed by electron microscopy. Outer membranes of mitochondria from the wild-type and β2-/- but not α7-/- mice bound α7 nAChR-specific antibody and toxins: FITC-labeled α-cobratoxin or Alexa 555-labeled α-bungarotoxin. α7 nAChR agonists (1 μM acetylcholine, 10 μM choline or 30 nM PNU-282987) impaired intramitochondrial Ca(2+) accumulation and significantly decreased cytochrome c release stimulated with either 90 μM CaCl(2) or 0.5 mM H(2)O(2). α7-specific antagonist methyllicaconitine (50 nM) did not affect Ca(2+) accumulation in mitochondria but attenuated the effects of agonists on cytochrome c release. Inhibitor of voltage-dependent anion channel (VDAC) 4,4'-diisothio-cyano-2,2'-stilbene disulfonic acid (0.5 μM) decreased cytochrome c release stimulated with apoptogens similarly to α7 nAChR agonists, and VDAC was co-captured with the α7 nAChR from mitochondria outer membrane preparation in both direct and reverse sandwich ELISA. It is concluded that α7 nAChRs are expressed in mitochondria outer membrane to regulate the VDAC-mediated Ca(2+) transport and mitochondrial permeability transition.  相似文献   

8.
A series of N, N– disubstituted piperazines and homopiperazines were prepared and evaluated for binding to natural α4β2* and α7* neuronal nicotinic acetylcholine receptors (nAChRs) using whole brain membrane. Some compounds exhibited good selectivity for α4β2* nAChRs and did not interact with the α7* nAChRs subtype. The most potent analogs were compounds 8-19 (Ki = 10.4 μM), 8–13 (Ki = 12.0 μM), and 8–24 (Ki = 12.8 μM). Thus, linking together a pyridine π-system and a cyclic amine moiety via a homopiperazine ring affords compounds with low affinity but with good selectivity for α4β2* nAChRs.  相似文献   

9.
The temperature-sensitive transient receptor potential channel, TRPM8, was recently cloned and found to be activated by cold and menthol. Whole-cell recordings show that TRPM8 is permeable to multiple cations and exhibits a strong outward rectification. Here, we examine the mechanism underlying menthol-evoked current rectification of TRPM8 transiently expressed in tsA-201 cells at room temperature ( approximately 25 degrees C). Whole-cell currents (ruptured, bath: Na(+), K(+), Ca(2+), or Ba(2+); pipette: KCl) exhibited a strong outward rectification in the presence of menthol, consistent with previous studies. The outward K(+) current was reduced in the presence of external Ca(2+) or Ba(2+). Single-channel recordings (cell-attached) showed that menthol induced brief channel openings with two conducting states in the voltage range between -80 and +60mV. The small current (i(S)) conducted both monovalent and divalent ions, and the large one (i(L)) predominantly monovalent ions. The i-V plot for Ca(2+) was weakly outward rectifying, whereas those for monovalent ions were linear. The i(S) may result in the divalent ion-induced reduction of the whole-cell outward current. The open probability (P(o)) in all ion conditions tested was low at negative voltages and increased with depolarization, accounting for the small inward currents observed at the whole-cell level. In conclusion, our results indicate that menthol induced steep outward rectification of TRPM8 results from the voltage-dependent open channel probability and the permeating ion-dependent modulation of the unitary channel conductance.  相似文献   

10.
Recently, we investigated the molecular mechanisms of the smoking cessation drug varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, in its ability to decrease voluntary ethanol intake in mice. Previous to our study, other labs had shown that this drug can decrease ethanol consumption and seeking in rat models of ethanol intake. Although varenicline was designed to be a high affinity partial agonist of nAChRs containing the α4 and β2 subunits (designated as α4β2*), at higher concentrations it can also act upon α3β2*, α6*, α3β4* and α7 nAChRs. Therefore, to further elucidate the nAChR subtype responsible for varenicline-induced reduction of ethanol consumption, we utilized a pharmacological approach in combination with two complimentary nAChR genetic mouse models, a knock-out line that does not express the α4 subunit (α4 KO) and another line that expresses α4* nAChRs hypersensitive to agonist (the Leu9'Ala line). We found that activation of α4* nAChRs was necessary and sufficient for varenicline-induced reduction of alcohol consumption. Consistent with this result, here we show that a more efficacious nAChR agonist, nicotine, also decreased voluntary ethanol intake, and that α4* nAChRs are critical for this reduction.  相似文献   

11.
Nicotine increases the number of neuronal nicotinic acetylcholine receptors (nAChRs) in brain. This study investigated the effects of chronic nicotine treatment on nAChRs expressed in primary cultured neurons. In particular, we studied the chronic effects of nicotine exposure on the total density, surface expression and turnover rate of heteromeric nAChRs. The receptor density was measured by [12?I]epibatidine ([12?I]EB) binding. Untreated and nicotine-treated neurons were compared from several regions of embryonic (E19) rat brain. Twelve days of treatment with 10 μM nicotine produced a twofold up-regulation of nAChRs. Biotinylation and whole-cell binding studies indicated that up-regulation resulted from an increase in the number of cell surface receptors as well as intracellular receptors. nAChR subunit composition in cortical and hippocampal neurons was assessed by immunoprecipitation with subunit-selective antibodies. These neurons contain predominantly α4, β2 and α5 subunits, but α2, α3, α6 and β4 subunits were also detected. Chronic nicotine exposure yielded a twofold increase in the β2-containing receptors and a smaller up-regulation in the α4-containing nAChRs. To explore the mechanisms of up-regulation we investigated the effects of nicotine on the receptor turnover rate. We found that the turnover rate of surface receptors was > 2 weeks and chronic nicotine exposure had no effect on this rate.  相似文献   

12.
Nicotine is an agonist of nicotinic acetylcholine receptors (nAChRs) that has been extensively used as a template for the synthesis of α4β2-preferring nAChRs. Here, we used the N-methyl-pyrrolidine moiety of nicotine to design and synthesise novel α4β2-preferring neonicotinic ligands. We increased the distance between the basic nitrogen and aromatic group of nicotine by introducing an ester functionality that also mimics acetylcholine (Fig. 2). Additionally, we introduced a benzyloxy group linked to the benzoyl moiety. Although the neonicotinic compounds fully inhibited binding of both [α-125I]bungarotoxin to human α7 nAChRs and [3H]cytisine to human α4β2 nAChRs, they were markedly more potent at displacing radioligand binding to human α4β2 nAChRs than to α7 nAChRs. Functional assays showed that the neonicotinic compounds behave as antagonists at α4β2 and α4β2α5 nAChRs. Substitutions on the aromatic ring of the compounds produced compounds that displayed marked selectivity for α4β2 or α4β2α5 nAChRs. Docking of the compounds on homology models of the agonist binding site at the α4/β2 subunit interfaces of α4β2 nAChRs suggested the compounds inhibit function of this nAChR type by binding the agonist binding site.  相似文献   

13.
The present study describes our ongoing efforts toward the discovery of drugs that selectively target nAChR subtypes. We exploited knowledge on nAChR ligands and their binding site that were previously identified by our laboratory through virtual screenings and identified benzamide analogs as a novel chemical class of neuronal nicotinic receptor (nAChR) ligands. The lead molecule, compound 1 (4-(allyloxy)-N-(6-methylpyridin-2-yl)benzamide) inhibits nAChR activity with an IC50 value of 6.0 (3.4–10.6) μM on human α4β2 nAChRs with a ~5-fold preference against human α3β4 nAChRs. Twenty-six analogs of compound 1 were also either synthesized or purchased for structure–activity relationship (SAR) studies and provided information relating the chemical/structural properties of the molecules to their ability to inhibit nAChR activity. The discovery of subtype-selective ligands of nAChRs described here should contribute significantly to our understanding of the involvement of specific nAChR subtypes in normal and pathophysiological states.  相似文献   

14.
Asperparalines produced by Aspergillus japonicus JV-23 induce paralysis in silkworm (Bombyx mori) larvae, but the target underlying insect toxicity remains unknown. In the present study, we have investigated the actions of asperparaline A on ligand-gated ion channels expressed in cultured larval brain neurons of the silkworm using patch-clamp electrophysiology. Bath-application of asperparaline A (10 μM) had no effect on the membrane current, but when delivered for 1 min prior to co-application with 10 μM acetylcholine (ACh), it blocked completely the ACh-induced current that was sensitive to mecamylamine, a nicotinic acetylcholine receptor (nAChR)-selective antaogonist. In contrast, 10 μM asperparaline A was ineffective on the γ-aminobutyric acid- and L-glutamate-induced responses of the Bombyx larval neurons. The fungal alkaloid showed no-use dependency in blocking the ACh-induced response with distinct affinity for the peak and slowly-desensitizing current amplitudes of the response to 10 μM ACh in terms of IC(50) values of 20.2 and 39.6 nM, respectively. Asperparaline A (100 nM) reduced the maximum neuron response to ACh with a minimal shift in EC(50), suggesting that the alkaloid is non-competitive with ACh. In contrast to showing marked blocking action on the insect nAChRs, it exhibited only a weak blocking action on chicken α3β4, α4β2 and α7 nAChRs expressed in Xenopus laevis oocytes, suggesting a high selectivity for insect over certain vertebrate nAChRs.  相似文献   

15.
16.
Although transient receptor potential (TRP) channel biology research has expanded rapidly in recent years, the field is hampered by the widely held, but relatively poorly investigated, belief that most of the pharmacological tools used to investigate TRP channel function may not be particularly selective for their intended targets. The objective of this study was therefore to determine if this was indeed the case by systematically evaluating the effects of three routinely used putative TRP channel antagonists, SKF 96365, flufenamic acid (FF) and 2-aminoethoxydiphenyl borate (2-APB) against one of the most widely expressed CNS receptor subtypes CNS, the human α1β2γ2 GABA(A) receptor. Using whole cell patch-clamp recording to record responses to rapidly applied GABA in the absence and presence of the three putative antagonists in turn we found that SKF 96365 (1-100 μM) and FF (1-100 μM) significantly inhibited GABA responses of recombinant human α1β2γ2 GABA(A) receptor stably expressed in HEK293 cells with IC(50) values of 13.4 ± 5.1 and 1.9 ± 1.4 μM, respectively, suppressing the maximal response to GABA at all concentrations used in a manner consistent with a non-competitive mode of action. SKF 96365 and FF also both significantly reduced desensitisation and prolonged the deactivation kinetics of the receptors to GABA (1mM; P<0.05). 2-APB (10-1000 μM) also inhibited responses to GABA at all concentrations used with an IC(50) value of 16.7 ± 5.4 μM (n=3-5) but had no significant effect on the activation, desensitisation or deactivation kinetics of the GABA responses. Taken together this investigation revealed that these widely utilised TRP channel antagonists display significant 'off-target' effects at concentrations that are routinely used for the study of TRP channel function in numerous biological systems and as such, data which is obtained utilising these compounds should be interpreted with caution.  相似文献   

17.
Subtype selective molecules for α4β2 neuronal nicotinic acetylcholine receptors (nAChRs) have been sought as novel therapeutics for nicotine cessation. α4β2 nAChRs have been shown to be involved in mediating the addictive properties of nicotine while other subtypes (i.e., α3β4 and α7) are believed to mediate the undesired effects of potential CNS drugs. To obtain selective molecules, it is important to understand the physiochemical features of ligands that affect selectivity and potency on nAChR subtypes. Here we present novel QSAR/QSSR models for negative allosteric modulators of human α4β2 nAChRs and human α3β4 nAChRs. These models support previous homology model and site-directed mutagenesis studies that suggest a novel mechanism of antagonism. Additionally, information from the models presented in this work was used to synthesize novel molecules; which subsequently led to the discovery of a new selective antagonist of human α4β2 nAChRs.  相似文献   

18.
Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 μM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and disorders.  相似文献   

19.
Abstract

This report provides evidence that physostigmine (Phy) and benzoquinonium (BZQ) are able to activate nicotinic acetylcholine receptors (nAChRs) through binding site(s) distinct from those of the natural transmitter, ACh. Such findings are in agreement with a second pathway of activation of nAChRs. Receptor activation may be modulated through the novel site, and, consequently, physiological processes involving nicotinic synapses could be controlled. Using patch clamp techniques, single channel currents activated by ACh and anatoxin were recorded from frog interosseal muscle fibers under cell-attached condition and outside-out patches excised from cultured rat hippocampal neurons. Whole cell nicotinic currents were also studied in the cultured neurons. In most of the neurons, nicotinic responses were blocked by the nicotinic antagonists methyllycaconitine (MLA) and α-bungarotoxin (α-BGT). Evaluation of the effects of Phy and BZQ on the muscle and on the α-BGT- and MLA-sensitive neuronal nAChRs demonstrated that both compounds were open channel blockers at these receptors. Furthermore, at low micromolar concentrations, Phy and BZQ activated the nAChRs of all preparations tested, such an effect being unexpectedly resistant to α-BGT or MLA. Thus, the nAChRs could be activated via two distinct binding sites: one for ACh and the other for Phy and BZQ. These findings and previous biochemical results led us to suggest that a putative endogenous ligand could bind to the new site and thereby regulate the activation of nAChRs in nicotinic synapses.  相似文献   

20.
Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperature and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of environmental cold stress such as cold allodynia in dorsal root ganglion (DRG) neuron; however, the underlying mechanisms of action are unclear. We tested the effects of physiological heat (37°C), anthralic acid (ACA and 0.025 mM), 2-aminoethyl diphenylborinate (2-APB and 0.05) on noxious cold (10°C) and menthol (0.1 mM)-induced TRPM8 cation channel currents in the DRG neurons of rats. DRG neurons were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM8 currents were consistently induced by noxious cold or menthol. TRPM8 channels current densities of the neurons were higher in cold and menthol groups than in control. When the physiological heat is introduced by chamber TRPM8 channel currents were inhibited by the heat. Noxious cold-induced Ca2+ gates were blocked by the ACA although menthol-induced TRPM8 currents were not blocked by ACA and 2-APB. In conclusion, the results suggested that activation of TRPM8 either by menthol or nociceptive cold can activate TRPM8 channels although we observed the protective role of heat, ACA and 2-APB through a TRPM8 channel in nociceptive cold-activated DRG neurons. Since cold allodynia is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号