首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.  相似文献   

2.
The antiapoptotic protein Bcl-xL is involved in development of neurobiological resilience to stress; hence, the possibility of use of psychotropic drugs to increase its expression in brain in response to stress is of considerable interest. Lithium is a neurotropic drug widely used in psychiatry. In work, we studied effects of lithium administration (for 2 or 7 days) on the expression of Bcl-xL mRNA and protein in the hippocampi and cortices of rats subjected to stress that induced depression-like behavior in the animals. In contrast to the brain-derived neurotrophic factor (BDNF), whose expression decreased in the hippocampus in response to acute stress, stress increased the level of Bcl-xL mRNA in the hippocampus, but decreased it in the frontal cortex. Treatment of stressed animals with lithium for 2 or 7 days increased Bcl-xL protein levels 1.5-fold in the hippocampus, but it decreased them in the cortex. Therefore, Bcl-xL expression in the brain can be modulated by both stress and psychotropic drugs, and the effects of these factors are brain region-specific: both stress exposure and lithium administration activated Bcl-xL expression in the hippocampus and suppressed it in the frontal cortex. The activation of Bcl-xL expression in the hippocampus by lithium, demonstrated for the first time in this study, suggests an important role of this protein in the therapeutic effects of lithium in the treatment of stress-induced psychoemotional disorders.  相似文献   

3.
4.
Major depression has been interpreted as an inflammatory disease characterized by cell-mediated immune activation, which is generally triggered by various stresses. Microglia has been thought to be the cellular link between inflammation and depression-like behavioural alterations. The expression of cathepsin C (Cat C), a lysosomal proteinase, is predominantly induced in microglia in neuroinflammation. However, little is known about the role of Cat C in pathophysiology of depression. In the present study, Cat C transgenic mice and wild type mice were subjected to an intraperitoneal injection of LPS (0.5 mg/kg) and 6-week unpredictable chronic mild stress (UCMS) exposure to establish acute and chronic stress-induced depression model. We examined and compared the behavioural and proinflammatory cytokine alterations in serum and depression-targeted brain areas of Cat C differentially expressed mice in stress, as well as indoleamine 2,3-dioxygenase (IDO) and 5-hydroxytryptamine (5HT) levels in brain. The results showed that Cat C overexpression (Cat C OE) promoted peripheral and central inflammatory response with significantly increased TNFα, IL-1β and IL-6 in serum, hippocampus and prefrontal cortex, and resultant upregulation of IDO and downregulation of 5HT expression in brain, and thereby aggravated depression-like behaviours accessed by open field test, forced swim test and tail suspension test. In contrast, Cat C knockdown (Cat C KD) partially prevented inflammation, which may help alleviate the symptoms of depression in mice. To the best of our knowledge, we are the first to demonstrate that Cat C aggravates neuroinflammation involved in disturbances of behaviour and neurochemistry in acute and chronic stress-induced murine model of depression.  相似文献   

5.
Stressful events during adulthood are potent adverse environmental factors that can predispose individuals to psychiatric disorders, including depression; however, many individuals exposed to stressful events can adapt and function normally. While stress vulnerability may influence depression, the molecular mechanisms underlying the susceptibility and adaptation to chronic stress within the brain are poorly understood. In this study, two genetically distinct mouse strains that exhibit different behavioral responses to chronic stress were used to demonstrate how the differential epigenetic status of the glial cell-derived neurotrophic factor (Gdnf) gene in the ventral striatum modulates susceptibility and adaptation to chronic stress. Our results suggest that the histone modifications and DNA methylation of the Gdnf promoter have crucial roles in the control of behavioral responses to chronic stress. Our data provide insights into these mechanisms, suggesting that epigenetic modifications of Gdnf, along with genetic and environmental factors, contribute to behavioral responses to stress.  相似文献   

6.
Continuous intra- and extracellular stresses induce disorder of Ca2+ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.  相似文献   

7.
The period of adolescence is characterized by a high vulnerability to stress and trauma, which might result in long-lasting consequences and an increased risk to develop psychiatric disorders. Using a recently developed mouse model for chronic social stress during adolescence, we studied persistent neuroendocrine and behavioral effects of chronic social stress obtained 12 months after cessation of the stressor. As a reference, we investigated immediate effects of chronic stress exposure obtained at the end of the chronic stress period. Immediately after the 7 week chronic stress period stressed animals show significantly increased adrenal weights, decreased thymus weight, increased basal corticosterone secretion and a flattened circadian rhythm. Furthermore, stressed animals display an increased anxiety-like behavior in the elevated plus maze and the novelty-induced suppression of feeding test. Hippocampal mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) mRNA levels were significantly decreased. To investigate persistent consequences of this early stressful experience, the same parameters were assessed in aged mice 12 months after the cessation of the stressor. Interestingly, we still found differences between formerly stressed and control mice in important stress-related parameters. MR expression levels were significantly lower in stressed animals, suggesting lasting, possibly epigenetic alterations in gene expression regulation. Furthermore, we observed long-term behavioral alterations in animals stressed during adolescence. Thus, we could demonstrate that chronic stress exposure during a crucial developmental time period results in long-term, persistent effects on physiological and behavioral parameters throughout life, which may contribute to an enhanced vulnerability to stress-induced diseases.  相似文献   

8.
A single exposure of rats to the forced-swimming stress decreased BDNF mRNA levels in the cortex and increased Bcl-xl gene expression in the hippocampus and amygdala 24 h after the stress. The animals demonstrated a depressive-like behavior and elevated blood corticosterone level. There was a significant negative correlation between BDNF mRNA level in the cortex and immobility time during swimming. Repeated exposure to swimming stress caused the elevation of the hippocampal BDNF mRNA level assessed 24 h after the second swimming session. The data suggest that stress-induced down-regulation of cortical BDNF gene expression and behavioral despair in the forced-swimming test may be interrelated. The increase in the BDNF and Bcl-xl mRNA levels may contribute to the mechanisms protecting the brain against negative effects of stress.  相似文献   

9.
The effects of anxiogenic (pentylentetrazole) and anxiolytic (diazepam) agents on and cold swim stress-induced analgesia were investigated in SHR and NMRI male mice. It was shown that behavioral response to acute stress was associated with a change in the pain tolerance threshold. Diazepam increased immobility time and attenuated stress-induced analgesia (SIA). NMRI mice were more responsive to anxiolytic than the SHR mice, but the lattes manifested more dramatic changes when anxiety was pharmacologically enhanced (immobility time was significantly reduced and the SIA exaggerated). Our findings suggest that the main parameters change in reciprocal manner following a pharmacologically altered anxiety, and reveal that differences between two strains of mice are determined by differences in their sensitivity to stress.  相似文献   

10.
This article is part of a Special Issue “Parental Care”.Postpartum depression (PPD) is a common complication following childbirth experienced by one in every five new mothers. Although the neural basis of PPD remains unknown, previous research in rats has shown that gestational stress, a risk factor for PPD, induces depressive-like behavior during the postpartum period. Moreover, the effect of gestational stress on postpartum mood is accompanied by structural modifications within the nucleus accumbens (NAc) and the medial prefrontal cortex (mPFC)–limbic regions that have been linked to PPD. Mothers diagnosed with PPD are often prescribed selective serotonin reuptake inhibitor (SSRI) antidepressant medications and yet little is known about their effects in models of PPD. Thus, here we investigated whether postpartum administration of Citalopram, an SSRI commonly used to treat PPD, would ameliorate the behavioral and morphological consequences of gestational stress. In addition, we examined the effects of gestational stress and postpartum administration of Citalopram on structural plasticity within the basolateral amygdala (BLA) which together with the mPFC and NAc forms a circuit that is sensitive to stress and is involved in mood regulation. Our results show that postpartum rats treated with Citalopram do not exhibit gestational stress-induced depressive-like behavior in the forced swim test. In addition, Citalopram was effective in reversing gestational stress-induced structural alterations in the postpartum NAc shell and mPFC. We also found that gestational stress increased spine density within the postpartum BLA, an effect which was not reversed by Citalopram treatment. Overall, these data highlight the usefulness of gestational stress as a valid and informative translational model for PPD. Furthermore, they suggest that structural alterations in the mPFC–NAc pathway may underlie stress-induced depressive-like behavior during the postpartum period and provide much needed information on how SSRIs may act in the maternal brain to treat PPD.  相似文献   

11.
Because the detailed molecular mechanisms by which oxidative stress induces apoptosis are not completely known, we investigated how the complex Bcl-2 protein network might regulate oxidative stress-induced apoptosis. Using MEFs (mouse embryonic fibroblasts), we found that the endogenous anti-apoptotic Bcl-2 protein Bcl-xL prevented apoptosis initiated by H(2)O(2). The BH3 (Bcl-2 homology 3)-only Bcl-2 protein Noxa was required for H(2)O(2)-induced cell death and was the single BH3-only Bcl-2 protein whose pro-apoptotic activity was completely antagonized by endogenous Bcl-xL. Upon H(2)O(2) treatment, Noxa mRNA displayed the greatest increase among BH3-only Bcl-2 proteins. Expression levels of the anti-apoptotic Bcl-2 protein Mcl-1 (myeloid cell leukaemia sequence 1), the primary binding target of Noxa, were reduced in H(2)O(2)-treated cells in a Noxa-dependent manner, and Mcl-1 overexpression was able to prevent H(2)O(2)-induced cell death in Bcl-xL-deficient MEF cells. Importantly, reduction of the expression of both Mcl-1 and Bcl-xL caused spontaneous cell death. These studies reveal a signalling pathway in which H(2)O(2) activates Noxa, leading to a decrease in Mcl-1 and subsequent cell death in the absence of Bcl-xL expression. The results of the present study indicate that both anti- and pro-apoptotic Bcl-2 proteins co-operate to regulate oxidative stress-induced apoptosis.  相似文献   

12.
Abstract: Although alterations in serotonin levels and neurotransmission are associated with depressive disorders and effective antidepressant therapy, the exact cause of these disorders and the mode of action of anti-depressant drugs are poorly understood. In a genetic rat model of depression [Flinders sensitive line (FSL) rats], deviations from normal serotonin (5-HT) levels and metabolism in specific brain regions were determined. The levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in tissue punches of various brain regions were quantitated simultaneously with an HPLC apparatus coupled to an electrochemical detector. In the nucleus accumbens, prefrontal cortex, hippocampus, and hypothalamus of FSL rats, the levels of 5-HT and 5-HIAA were three- to eightfold higher than in control Sprague-Dawley rats. Significant differences in the levels of 5-HT and 5-HIAA in the striatum and raphe nucleus of the "depressed" and normal rats were not observed. After chronic treatment with the antidepressant desipramine (5 mg/kg/day for 18 days), the immobility score in a swim test, as a measure of a behavioral deficit, and 5-HT levels of the FSL rats became normalized, but these parameters in the control rats did not change. The [5-HIAA]/[5-HT] ratio was lower in the nucleus accumbens and hypothalamus of the FSL than in the control rats, and increased after desipramine treatment only in the nucleus accumbens of the FSL rats. These results indicate that the behavioral deficits expressed in the FSL model for depression correlate with increased 5-HT levels in specific limbic sites and suggest the FSL rats as a novel model for clarification of the molecular mechanism of clinically used antidepressant drugs.  相似文献   

13.
Social stress is frequently used as a model for studying the neuroendocrine mechanisms underlying stress-induced behavioral inhibition, depression, and fear conditioning. It has previously been shown that social subordination may result in increased glucocorticoid release and changes in brain signaling systems. However, it is still an open question which neuroendocrine and behavioral differences are causes, and which are consequences of social status. Using juvenile rainbow trout of similar size and with no apparent differences in social history, we demonstrate that the ability to win fights for social dominance can be predicted from the duration of a behavioral response to stress, in this case appetite inhibition after transfer to a new environment. Moreover, stress responsiveness in terms of confinement-induced changes in plasma cortisol was negatively correlated to aggressive behavior. Fish that exhibited lower cortisol responses to a standardized confinement test were markedly more aggressive when being placed in a dominant social position later in the study. These findings support the view that distinct behavioral-physiological stress coping styles are present in teleost fish, and these coping characteristics influence both social rank and levels of aggression.  相似文献   

14.
Nicotine, the main component of tobacco smoke, exerts influence on mood, and contributes to physical and psychological dependence. Taking into account frequent concomitance of nicotine abuse and stress, we aimed to research behavioral and biochemical effects associated with nicotine administration in combination with chronic unpredictable mild stress (CUMS). Mice were submitted to the procedure of CUMS for 4 weeks, 2 h per day. Our results revealed that CUMS-exposed animals exhibited behavioral alteration like anxiety disorders in the elevated plus maze (EPM) test, the disturbances in memory in the passive avoidance (PA) test and depressive effects in the forced swim test (FST). Moreover, nicotine (0.05–0.5 mg/kg), after an acute or subchronic administration decreased stress-induced depression- and anxiety-like effect as well as memory deficit. Administration of metyrapone (50 mg/kg), a glucocorticosteroid antagonist, alleviated the depressive effect induced by the CUMS. The biochemical experiments showed decreased values of the total antioxidant status (TAS), activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) with simultaneously increased in malondialdehyde (MDA) concentration in mice submitted to the CUMS. The same effects were observed after an acute and subchronic nicotine administration within all examined brain structures (i.e., hippocampus, cortex, and cerebellum) and in the whole brain in non-stressed and stressed mice confirming pro-oxidative effect of nicotine. Our study contributes to the understanding of behavioral and biochemical mechanisms involved in stress-induced disorders such as depression, anxiety and memory disturbances as well as dual nicotine-stress interactions on the basis of the development of nicotine dependence.  相似文献   

15.
1. In depression, psychiatric symptoms are frequently associated with impaired cardiovascular function and perhaps also increased risk for cancer diseases. Pathophysiological basis of this comorbidity is not clearly understood. Molecular events involved, particularly factors modified by chronic stress exposure, may only be evaluated in animal models of depression.2. Present experiments were aimed to study parameters related to cardiovascular system (tyrosine hydroxylase (TH) gene expression in adrenal glands) and carcinogenesis (retinoic acid receptors in the liver) in the chronic mild stress model of depression.3. Chronic mild stress induced a rise in adrenal TH gene expression in both male and female rats. Gender dependent changes were found in retinoic acid receptor binding with stress-induced activation in females but not males. Ovariectomized animals exhibited higher retinoic acid receptor binding, slightly elevated TH mRNA levels and failed to respond to chronic mild stress exposure with further increase in TH mRNA levels. Similarly, chronic mild stress induced an anhedonic state manifested by decreased sucrose preference in control but not ovariectomized rats.4. Presented data document that central neurochemical and behavioral changes in animals exposed to chronic mild stress model of depression are associated with changes in adrenal TH gene expression and with gender dependent changes in retinoic acid receptor status in the liver. Such alterations may participate in the development of pathological changes and could participate on increased risk for cardiovascular and oncologic comorbidity in depressive patients.  相似文献   

16.
Epinephrine (Epi), which initiates short-term responses to cope with stress, is, in part, stress-regulated via genetic control of its biosynthetic enzyme, phenylethanolamine N-methyltransferase (PNMT). In rats, immobilization (IMMO) stress activates the PNMT gene in the adrenal medulla via Egr-1 and Sp1 induction. Yet, elevated Epi induced by acute and chronic stress is associated with stress induced, chronic illnesses of cardiovascular, immune, cancerous, and behavioral etiologies. Major sources of Epi include the adrenal medulla and brainstem. Although catecholamines do not cross the blood-brain barrier, circulating Epi from the adrenal medulla may communicate with the central nervous system and stress circuitry by activating vagal nerve β-adrenergic receptors to release norepinephrine, which could then stimulate release of the same from the nucleus tractus solitarius and locus coeruleus. In turn, the basal lateral amygdala (BLA) may activate to stimulate afferents to the hypothalamus, neocortex, hippocampus, caudate nucleus, and other brain regions sequentially. Recently, we have shown that repeated IMMO or force swim stress may evoke stress resiliency, as suggested by changes in expression and extinction of fear memory in the fear-potentiated startle paradigm. However, concomitant adrenergic changes seem stressor dependent. Present studies aim to identify stressful conditions that elicit stress resiliency versus stress sensitivity, with the goal of developing a model to investigate the potential role of Epi in stress-associated illness. If chronic Epi over expression does elicit illness, possibilities for alternative therapeutics exist through regulating stress-induced Epi expression, adrenergic receptor function and/or corticosteroid effects on Epi, adrenergic receptors and the stress axis.  相似文献   

17.
Enhanced stress reactivity or sensitivity to chronic stress increases the susceptibility to mood pathologies such as major depression. The opioid peptide enkephalin is an important modulator of the stress response. Previous studies using preproenkephalin knockout (PENK KO) mice showed that these animals exhibit abnormal stress reactivity and show increased anxiety behavior in acute stress situations. However, the consequence of enkephalin deficiency in the reactivity to chronic stress conditions is not known. In this study, we therefore submitted wild‐type (WT) and PENK KO male mice to chronic stress conditions, using the chronic mild stress (CMS) protocol. Subsequently, we studied the CMS effects on the behavioral and hormonal level and also performed gene expression analyses. In WT animals, CMS increased the expression of the enkephalin gene in the paraventricular nucleus (PVN) of the hypothalamus and elevated the corticosterone levels. In addition, WT mice exhibited enhanced anxiety in the zero‐maze test and depression‐related behaviors in the sucrose preference and forced swim tests. Surprisingly, in PENK KO mice, we did not detect anxiety and depression‐related behavioral changes after the CMS procedure, and even measured a decreased hormonal stress response. These results indicate that PENK KO mice are resistant to the CMS effects, suggesting that enkephalin enhances the reactivity to chronic stress.  相似文献   

18.
Major depression is a public health problem, affecting 121 million people worldwide. Patients suffering from depression present high rates of morbidity, causing profound economic and social impacts. Furthermore, patients with depression present cognitive impairments, which could influence on treatment adherence and long-term outcomes. The pathophysiology of major depression is not completely understood yet but involves reduced levels of monoamine neurotransmitters, bioenergetics, and redox disturbances, as well as inflammation and neuronal loss. Treatment with anti-depressants provides a complete remission of symptoms in approximately 50% of patients with major depression. However, these drugs may cause side effects, as sedation and weight gain. In this context, there is increasing interest in studies focusing on the anti-depressant effects of natural compounds found in the diet. Resveratrol is a polyphenolic phytoalexin (3,4′,5-trihydroxystilbene; C14H12O3; MW 228.247 g/mol) and has been found in peanuts, berries, grapes, and wine and induces anti-oxidant, anti-inflammatory, and anti-apoptotic effects in several mammalian cell types. Resveratrol also elicits anti-depressant effects, as observed in experimental models using animals. Therefore, resveratrol may be viewed as a potential anti-depressant agent, as well as may serve as a model of molecule to be modified aiming to ameliorate depressive symptoms in humans. In the present review, we describe and discuss the anti-depressant effects of resveratrol focusing on the mechanism of action of this phytoalexin in different experimental models.  相似文献   

19.
Microtubule inhibiting agents (MIAs) characteristically induce phosphorylation of the major anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2 and Bcl-xL, and although this leads to Mcl-1 degradation, the role of Bcl-2/Bcl-xL phosphorylation in mitotic death has remained controversial. This is in part due to variation in MIA sensitivity among cancer cell lines, the dependency of cell fate on drug concentration and uncertainty about the modes of cell death occurring, thus making comparisons of published reports difficult. To circumvent problems associated with MIAs, we used siRNA knockdown of the anaphase-promoting complex activator, Cdc20, as a defined molecular system to investigate the role, specifically in mitotic death, of individual anti-apoptotic Bcl-2 proteins and their phosphorylated forms. We show that Cdc20 knockdown in HeLa cells induces mitotic arrest and subsequent mitotic death. Knockdown of Cdc20 in HeLa cells stably overexpressing untagged wild-type Bcl-2, Bcl-xL or Mcl-1 promoted phosphorylation of the overexpressed proteins in parallel with their endogenous counterparts. Overexpression of Bcl-2 or Bcl-xL blocked mitotic death induced by Cdc20 knockdown; phospho-defective mutants were more protective than wild-type proteins, and phospho-mimic Bcl-xL was unable to block mitotic death. Overexpressed Mcl-1 failed to protect from Cdc20 siRNA-mediated death, as the overexpressed protein was susceptible to degradation similar to endogenous Mcl-1. These results provide compelling evidence that phosphorylation of anti-apoptotic Bcl-2 proteins has a critical role in regulation of mitotic death. These findings make an important contribution toward our understanding of the molecular mechanisms of action of MIAs, which is critical for their rational use clinically.  相似文献   

20.
Modulation of serotonin transporter (5-HTT) function causes changes in affective behavior, both in humans and rodents. Stressful life events likewise affect emotional behavior. In humans, a low-expressing genetic 5-htt variant, the s allele of the 5-htt linked promoter region, has been associated with increased risk for depression only where there was a history of stressful life events. To investigate this gene by environment interaction in mice, we compared the effects of inescapable shocks on the behavior of wild-type (5-htt+/+), heterozygote (5-htt+/-) and serotonin transporter deficient (5-htt-/-) mice. Inescapable shocks induce behavioral changes including a shock escape deficit, in a subsequent test when escape is possible. Confirming a gene by environment interaction, we found that stress increases escape latencies in a gene-dose dependent manner (5-htt-/->5-htt+/->5-htt +/+), where as there were no differences among the genotypes in the unstressed condition. The vulnerability to increased escape latency could not be accounted for by enhanced fear learning, as 5-htt-/- mice did not show heightened fear conditioning. The interaction of 5-htt genotype and stress appeared to produce a selective behavioral vulnerability, because no interaction of 5-htt genotype and stress was observed in other measures of anxiety and depression-linked behavior, including the open field, novelty suppressed feeding, and forced swim tests. We replicated prior findings that the 5-htt-/- displays heightened anxiety and depression-like behavior at baseline (unstressed condition). In conclusion, our data offer the possibility for future investigation of the neural basis underlying 5-htt genotype-by-stress interaction shown here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号