首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Estrone and dehydroepiandrosterone (DHEA) sulfatases were studied in livers of normal and cirrhotic men. Their Km were 3.2μM and 1.2μM respectively. The musomal sulfatases were solubilized by Miranol H2M and ultrasound. After gel filtration, the soluble material gave a single peak of activity for both substrates with a molecular weight of approximately 330,000. In terms of pmol of product.min?1 per mg of fresh tissue, the mean (±SD) values of estrone and DHEA sulfatase activities were lower in cirrhotic livers [(n=7) (4.09±2.90 and 0.38±0.20)] than in normal livers [(n=13)(8.29±4.00 and 0.69±0.20)]. The differences were statistically significant: p<0.03 for estrone sulfatase and p<0.01 for DHEA sulfatase. In cirrhotic men, the mean level of plasma estrone is increased whereas that of estrone sulfate is decreased. The variations may be related to the decrease of serum albumin in cirrhotic subjects.  相似文献   

2.
Steroid sulfatase was purified approximately 170-fold from normal human placental microsomes and properties of the enzyme were investigated. The major steps in the purification procedure included solubilization with Triton X-100, column chromatofocusing, and hydrophobic interaction chromatography on phenylsepharose CL-4B. The purified sulfatase showed a molecular weight of 500-600 kDa on HPLC gel filtration, whereas the enzyme migrated as a molecular mass of 73 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The isoelectric point of steroid sulfatase was estimated to be 6.7 by isoelectric focusing in polyacrylamide gel in the presence of 2% Triton X-100. The addition of phosphatidylcholine did not enhance the enzyme activity in the placental microsomes obtained from two patients with placental sulfatase deficiency (PSD) after solubilization and chromatofocusing. This result indicates that PSD is the result of a defect in the enzyme rather than a defect in the membrane-enzyme structure. Amino acid analysis revealed that the purified human placental sulfatase did not contain cysteine residue. The Km and Vmax values of the steroid sulfatase for dehydroepiandrosterone sulfate (DHA-S) were 7.8 microM and 0.56 nmol/min, while those for estrone sulfate (E1-S) were 50.6 microM and 0.33 nmol/min, respectively. The results of the kinetic study suggest the substrate specificity of the purified enzyme, but further studies should be done with different substrates and inhibitors.  相似文献   

3.
Sulfatase enzymes have important roles in metabolism of steroid hormones and of glycosaminoglycans (GAGs). The activity of five sulfatase enzymes, including steroid sulfatase (STS; arylsulfatase C), arylsulfatase A (ASA; cerebroside sulfatase), arylsulfatase B (ASB; N-acetylgalactosamine-4-sulfatase), galactose-6-sulfatase (GALNS), and iduronate-2-sulfatase (IDS), was compared in six different mammary cell lines, including the malignant mammary cell lines MCF7, T47D, and HCC1937, the MCF10A cell line which is associated with fibrocystic disease, and in primary epithelial and myoepithelial cell lines established from reduction mammoplasty. The effects of estrogen hormones, including estrone, estradiol, estrone 3-sulfate, and estradiol sulfate on activity of these sulfatases were determined. The malignant cell lines MCF7 and T47D had markedly less activity of STS, ASB, ASA, and GAL6S, but not IDS. The primary myoepithelial cells had highest activity of STS and ASB, and the normal epithelial cells had highest activity of GALNS and ASA. Greater declines in sulfatase activity occurred in response to estrone and estradiol than sulfated estrogens. The study findings demonstrated marked variation in sulfatase activity and in effects of exogenous estrogens on sulfatase activity among the different mammary cell types.  相似文献   

4.
Steroid sulfatase of human placenta has been solubilized by treatment of the microsomal fraction with an amphoteric surface active agent, Miranol H2M and ultrasound. Criteria of solubility include non-sedimentation of the activity following centrifugation at 160,000 × g, its retention on Sepharose 6B and a single peak of activity after polyacrylamide gel electrophoresis. Enzyme activity was located in the same gel fractions for the two substrates tested; cholesterol sulfate and dehydroisoandrosterone sulfate. The addition of dithiothreitol was found necessary to maintain the stability of the enzyme indicating the presence of sulfhydryl groups in the molecule. A molecular weight of approximately 330,000 has been estimated from the elution volume of the enzyme system on a column of Sepharose 6B. It is believed that this protein represents a sulfatase enzyme complex composed of subunits with different specificities. From kinetic studies, a Km of 6.2 × 10?5M for the cleavage of dehydroisoandrosterone sulfate and a Km of 2 × 10?6M for the cleavage of cholesterol sulfate have been calculated.  相似文献   

5.
Abstract– The enzymatic hydrolysis by brain homogenate of the sulfate esters of estrone, pregnenolone, dehydroepiandrosterone, testosterone, cholesterol and p-nitrophenol was studied. With homogenate of young rat brain, the pH optima of estrone sulfatase 4 4 The term steroid sulfatase is used as a general name for the enzyme(s) which hydrolyzes the sulfate ester of a steroid. Simplified terms, such as estrone sulfatase, instead of the more formal terms, such as estrone sulfate sulfohydrolase, have been used throughout.
and arysulfatase C (p-nitrophenyl sulfate as substrate) were 8.2 and all other steroid sulfatases had pH optima at 6.6. Apparent Kms for these steroid sulfates were widely different. The highest Km value was 32.2 μm for estrone sulfate and the lowest was 0.66 μm for testosterone sulfate; the Km for p-nitrophenyl sulfate was 30 fold higher than for estrone sulfate. Specific activity was also highest with estrone sulfatase and lowest with testosterone sulfatase; specific activity with aryl sulfatase C was over 3 fold higher than with estrone sulfatase. Estrone sulfatase activity was inhibited noncompetitively by sulfate esters of dehydroepiandrosterone, pregnenolone, and cholesterol; on the other hand, other steroid sulfatases were inhibited by these latter three sulfates competitively. Developmental changes of these sulfohydrolase activities in rat brain were almost identical with the exception of testosterone sulfatase activity; the latter sulfatase had a peak activity at 30 days old, while all other sulfatase had a peak at 20 days old. Thermal stability of all these activities was identical. Testosterone sulfatase activity in neurological mouse mutants, jimpy, msd, and quaking mice, was less than one half of littermate controls, while other steroid sulfatase levels in these mutants' brain were normal. All sulfatase activities were diminished in the brain of a metachromatic leukodystrophy patient with multiple sulfatase deficiency. The brains of classical metachromatic leukodystrophy patients contained normal levels of all steroid sulfatases and arylsulfatase C, with the single exception of testosterone sulfatase which level was less than 50% of control.  相似文献   

6.
Characterization of arylsulfatase C isozymes from human liver and placenta   总被引:1,自引:0,他引:1  
Arylsulfatase C and steroid sulfatase were thought to be identical enzymes. However, recent evidence showed that human arylsulfatase C consists of two isozymes, s and f. In this study, the biochemical properties of the s form partially purified from human placenta were compared with those of the f form from human liver. Only the placental s form has steroid sulfatase activity and hydrolyses estrone sulfate, dehydroepiandrosterone sulfate and cholesterol sulfate. The liver f form has barely detectable activity towards these sterol sulfates. With the artificial substrate, 4-methylumbelliferyl sulfate, both forms demonstrated a similar KM but the liver enzyme has a pH optimum of 6.9 while the placental form displayed two optima at 7.3 and 5.5. The molecular weight of the native enzyme determined with gel filtration was 183,000 for the s form and 200,000 for the f form and their pI's were also similar at 6.5. However, the T50, temperature at which half of the enzyme activity was lost, was 49.5 degrees C for the f form and 56.8 degrees C for the s form. Polyclonal antibodies raised against the placental form reacted specifically against the s and not the f form. They immuno-precipitated concomitantly greater than 80% of the total placental arylsulfatase C and steroid sulfatase activities while less than 20% of the liver enzyme was immuno-precipitable. In conclusion, the two isozymes s and f of arylsulfatase C in humans purified from placenta and liver, respectively, have similar KM, pI' and native molecular weight. However, they are distinct proteins with different substrate specificity, pH optima, heat-lability and antigenic properties. Only the s form is confirmed to be steroid sulfatase.  相似文献   

7.
1. Hepatic arylsulfatase C (ASC) and steroid sulfatase (SS) from six of eleven mammals (rat, dog, baboon, cow, goat, and sheep) coeluted from DEAE-Sephacel as a single anionic species. A minor cationic peak of ASC and SS activity was also recovered from solubilized microsomes derived from the domestic cat. Characterization of the cationic activities indicated they were most likely contributed by a protein structurally related to the anionic isozyme. Properties of ASC and SS activities occurring in these seven species were most consistent with the presence of both activities in the same enzyme. 2. Guinea-pig liver SS activity was partitioned between an alkylsulfatase (hydrolyzing dehydroepiandrosterone sulfate (DHEAS)) and an arylsulfatase (hydrolyzing both estrone sulfate (E1S) and 4-methylumbelliferyl sulfate (4MUS) at a common active site). These enzymes were physically separable by ion-exchange chromatography and possessed distinct immunological and chemical properties. 3. Porcine, squirrel, and human livers possessed a major isozyme of ASC that lacked both E1S- and DHEAS-sulfatase activities. The human hepatic ASC was separable from SS by electrophoresis and was partially resolved from SS by DEAE-Sephacel chromatography. The ASC isozyme lacking SS activity was heat-labile in all three species.  相似文献   

8.
When arylsulfatase C, a microsomal membrane-bound enzyme, is assayed with its natural substrates, the 3-beta-hydroxysteroid sulfates, it is also known as steroid sulfatase. Whether arylsulfatase C and steroid sulfatase are identical enzymes or not, however, has long been disputed. We now report that two electrophoretic variants of arylsulfatase C occur in normal human fibroblasts: one has a single anodic band of activity, "s," and the other has an additional faster migrating band, "f". The two types, s and "f + s", occur in cells from either sex. When fibroblast strains with the f + s forms of arylsulfatase C were cloned, two types of primary clones were always obtained: s and f + s. A single f band was never seen. When these primary clones were subcloned, however, the arylsulfatase C phenotype remained unchanged: primary s clones gave rise to s subclones and f + s clones to f + s subclones only. Therefore, these forms were clonal in origin and demonstrated a novel inheritance pattern in human cultured cells. The appearance of increasing amounts of the f band was correlated with up to 4-fold increase of arylsulfatase C activity, whereas the steroid sulfatase activity remained constant, thus demonstrating that arylsulfatase C was not identical with steroid sulfatase activity. Polyclonal antibodies raised against the s form immunoprecipitated activities of the s form of arylsulfatase C and steroid sulfatase but not the f form of arylsulfatase C. Therefore, we conclude that only the s form of arylsulfatase C is immunologically related to steroid sulfatase so that arylsulfatase C per se is not necessarily identical with steroid sulfatase. In addition, a novel form of genetic heterogeneity of isozymes in human fibroblasts is demonstrated.  相似文献   

9.
The metabolism of estrone sulfate and dehydroisoandrosterone sulfate to the free, unconjugated steroids, estrone and dehydroisoandrosterone, was demonstrated in more than thirty different tissues from male and female BALB/c mice. The activity of steroid sulfatase, when expressed per mg tissue, was greatest in both the pituitary gland and the adrenal glands. The pituitary gland, however, had the lowest capacity for hydrolysis of steroid sulfates while the liver had the greatest capacity. 17 beta-Hydroxysteroid oxidoreductase activity also was demonstrated in all mouse tissues by the formation of estradiol-17 beta when using estrone sulfate as the substrate. The highest apparent activity for 17 beta-hydroxysteroid oxidoreductase was found in lung tissue, and the greatest capacity to form estradiol-17 beta from estrone sulfate was found in liver, lungs, kidneys and testes. This study demonstrates that the majority of mouse tissues have steroid sulfatase and 17 beta-hydroxysteroid oxidoreductase activities.  相似文献   

10.
11.
Human placental steroid sulfatase: purification and properties   总被引:2,自引:0,他引:2  
Steroid sulfatase is recovered quantitatively from the 105,000 g h supernatant of human placental microsomes extracted with Triton X-100. The solubilized enzyme has been purified using conventional techniques. Throughout the purification procedure, steroid sulfatase appears to be heterogeneous as evidenced by certain, but not all, criteria. Following polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the final preparation exhibits a major component and varying amounts of two minor ones. Antibodies raised in rabbits with the heterogeneous immunogen give rise to a single precipitation line when the native enzyme is analyzed by double immunodiffusion or by immunoelectrophoresis. In addition, using aged preparations of microsomes and immunoaffinity techniques, steroid sulfatase activity was found to be associated with the fastest migrating minor component. This finding would suggest that the apparent heterogeneity of purified steroid sulfatase is linked to degradation processes occurring within the microsomal preparations. Steroid sulfatase has a Stokes radius of 56 A, a sedimentation coefficient of 4.85 +/- 0.15S (in Triton-containing buffers) and binds 1.3 g of Triton X-100-per g of protein. The molecular weight of the Triton-protein complex was calculated to be 166,000 in which the glycoprotein portion contribution is about 43% (72,000). In contrast, the apparent molecular weight of the major polypeptide determined on calibrated SDS-gels is 62,000. The purified enzyme exhibits two pH optima with cholesterol sulfate as substrate, an acidic one at pH 5.0 and a second one at pH 7.5. The Km values for cholesterol sulfate, dehydroandrosterone sulfate and p-nitrophenylsulfate were 5.26, 14 and 1,320 microM, respectively.  相似文献   

12.
A number of 2-phenylindole sulfamates with lipophilic side chains in 1- or 5-position of the indole were synthesized and evaluated as steroid sulfatase (estrone sulfatase) inhibitors. Most of the new sulfamates inhibited the enzymatic hydrolysis of estrone sulfate in MDA-MB 231 breast cancer cells with IC50 values between 2 nM and 1 μM. A favorable position for a long side chain is the nitrogen of a carbamoyl group at C-5 of the indole when the phenyl ring carries the sulfamate function. These derivatives inhibit gene activation in estrogen receptor (ER)-positive MCF-7 breast cancer cells in submicromolar concentrations and reduce cell proliferation with IC50 values of ca. 1 μM. All of the potent inhibitors were devoid of estrogenic activity and have the potential for in vivo application as steroid sulfatase inhibitors.  相似文献   

13.
The presence of estrone sulfatase in breast tumors and the high levels of circulating estrone sulfate may contribute the major portion of estrogen synthesized locally in breast tissues through conversion of estrone sulfate to estrone by the enzyme. Using inhibitors of estrone sulfatase for the treatment of estrogen-dependent (estrogen receptor positive, ER(+)) breast cancer could be a very effective therapeutic strategy for the treatment of estrogen-dependent breast tumors in postmenopausal women. Therefore, we designed and synthesized several steroidal 2',3'-oxathiazines that inhibit estrone sulfatase and have greatly reduced estrogenic side effects. Our in vitro studies indicate that the oxathiazine compounds have inhibitory activity on estrone sulfatase in MCF-7 human breast cancer cells. These estrone sulfatase inhibitors (ESIs) also inhibit the growth of MCF-7 cells induced by estrone sulfate. In addition, our in vivo experiments demonstrate that our ESIs have moderate antitumor activity against MCF-7 breast cancer xenografts in Balb/c athymic nude mice. The synthesis and biological activity of a number of these unique steroidal ESIs are described.  相似文献   

14.
In postmenopausal breast cancer tissue, steroid sulfatase (STS) activity is high and much estrone sulfate also exists; these facts reveal that estrone sulfate may be involved in the growth of breast cancer as an estrogen source. Steroid sulfatase is an enzyme, which catalyzes hydrolysis from estrone sulfate to estrone, and the development of steroid sulfatase inhibitors is expected as novel therapeutic drugs for postmenopausal breast cancer. We have developed a novel compound 2',4'-dicyanobiphenyl-4-O-sulfamate (TZS-8478), which has potent steroid sulfatase-inhibitory activity and exhibits no estrogenicity in vitro and in vivo. To elucidate its usefulness as a therapeutic drug for postmenopausal breast cancer, we examined the breast cancer cell proliferation- and breast tumor growth-inhibitory activity of TZS-8478 in postmenopausal breast cancer model rats. TZS-8478 dose-dependently suppressed the estrone sulfate-stimulated proliferation of MCF-7 cells. Regarding nitrosomethylurea (NMU)-induced postmenopausal breast cancer models, furthermore, TZS-8478 (0.5 mg/kg per day) markedly inhibited the estrone sulfate-stimulated growth of breast tumors similarly to estrone sulfate-depletion. TZS-8478 completely inhibited steroid sulfatase activity in tumor, uterus and liver, and also markedly lowered plasma concentrations of estrone and estradiol. The above mentioned results suggested that TZS-8478 may be useful as a therapeutic drug for estrogen-dependent postmenopausal breast cancer.  相似文献   

15.
Our hypothesis is that the steroid sulfatase gene (Sts) may indirectly contribute to the modulation of blood pressure (BP) in rats with genetic hypertension. The steroid sulfatase enzyme (STS) catalyzes the conversion of estrone sulfate, dehydroepiandrosterone sulfate, cholesterol sulfate and glucocorticoid sulfates to their active nonconjugated forms. This causes the elevation of biologically active steroids, such as glucocorticoids, mineralcorticoids as well as testosterone, which may lead to increased BP. The main objective was to examine the effects of a steroid sulfatase inhibitor on blood pressure and steroid levels in rats with hypertensive genetic backgrounds. Three treatment groups, 5-15 weeks of age were used: controls, estrone and STS inhibitor (estrone-3-O-sulfamate), (n=8 per group). BP was taken weekly by tail cuff, and serum testosterone (T), estrogens (E), and plasma corticosterone (C) levels were measured by radioimmunoassay. BP was significantly reduced by the STS inhibitor in the strains with genetically elevated BP. Also the inhibitor alone significantly reduced plasma corticosterone in all strains compared to estrone treatment with a concomitant as well as significant rise in estrogens and reduction in testosterone and body weight.  相似文献   

16.
Summary We report on three independent cases with a partial deficiency of placental steroid sulfatase (E.C.3.1.6.2). Upon routine pregnancy monitoring these patients were detected on the basis of low estriol excretion and failing induction of labor. In all three cases a male was delivered and subsequently the diagnosis of partial deficiency of placental steroid sulfatase was confirmed enzymatically in placenta homogenates. In one case, fibroblast cultures were established from skin explants of mother and son. In fibroblasts of the child, as in placental tissue, the activity of steroid sulfatase was only 34% of normal. Similar values were obtained for arylsulfatase C, though this enzyme is clearly separable from steroid sulfatase by electrophoresis. In cells of the mother, enzyme activities were unremarkable.  相似文献   

17.
18.
Selcer KW  Kabler H  Sarap J  Xiao Z  Li PK 《Steroids》2002,67(10):821-826
The enzyme steryl sulfatase may help support the growth of hormone-dependent tumors, including prostate cancers, by facilitating the conversion of circulating precursor steroids to active hormones. We sought to determine the presence of steryl sulfatase activity in the androgen-dependent human prostate cancer cell line LNCaP, and to determine if this activity was inhibited by known steryl sulfatase inhibitors. Intact LNCaP cultures had steryl sulfatase activity, as determined by conversion of [3H]estrone sulfate (E(1)S) to unconjugated steroids. The level of steryl sulfatase activity was relatively low (4.6 pmol/18 h/million cells) compared to MDA-MB-231 breast cancer cells (284.0 pmol/18 h/million cells). The observed activity in both cell lines was blocked by addition of 1 microM estrone sulfamate (EMATE), an active-site-directed, steroidal inhibitor of steryl sulfatase. Steryl sulfatase activity was also inhibited by Danazol, and by (p-O-sulfamoyl)-tetradecanoyl tyramine (C2-14), a non-steroidal inhibitor. Microsomes prepared from LNCaP cultures also showed steryl sulfatase activity, as determined by hydrolysis of [3H]E(1)S and [3H]dehydroepiandrosterone sulfate (DHEAS) to unconjugated forms. LNCaP and MDA-MB-231 microsomes both hydrolyzed E(1)S about two times faster than DHEAS. Hydrolysis of E(1)S in LNCaP and MDA-MB-231 microsomes was blocked by steryl sulfatase inhibitors with the following relative potencies: EMATE>C2-14>Danazol. These data demonstrate that LNCaP prostate cancer cells contain a steryl sulfatase with properties similar to that found in human breast cancer cells, and that the activity of this enzyme can be blocked by known steryl sulfatase inhibitors. Steryl sulfatase inhibitors may be useful as an adjuvant to androgen deprivation therapy for prostate cancer.  相似文献   

19.
W L Daniel  P L Chang 《Enzyme》1990,43(4):212-222
Human placental and hepatic arylsulfatase C (ASC) were purified to homogeneity and about 1,000-fold, respectively. Placental ASC hydrolyzed sterol sulfates at the same active site, whereas the major hepatic ASC did not. This major hepatic ASC isozyme was more thermolabile than placental ASC and steroid sulfatase from both placenta and liver. It was not precipitated by anti-bovine ASC IgG which quantitatively precipitated both placental ASC and steroid sulfatase activities from placenta and liver. A minor hepatic ASC isozyme with similar electrophoretic mobility to the placental enzyme copurified with the major hepatic ASC and is likely responsible for the steroid sulfatase activity in this organ. Hence, placental ASC and steroid sulfatase are biochemically and antigenically identical to hepatic steroid sulfatase. In contrast, the major hepatic ASC is a distinct protein whose catalytic and structural properties differ from all the above enzymes.  相似文献   

20.
Steroid sulfatase is a membrane-bound microsomal enzyme, present in various tissues. In this report, data on sulfatase activity in peripheral blood leukocytes isolated from normal women and the characterization of its enzyme are studied. In addition, sulfatase activities in placental sulfatase deficiency (PSD) and ichthyosis patients including ichthyosis vulgaris (IV) and recessive X-linked ichthyosis (RXLI) were analysed and were compared with normal subjects. Steroid sulfatase activity was measured by using tritium labeled steroid sulfate as the reaction substrate. It is demonstrated that human leukocytes contain a sulfatase activity for pregnenolone sulfate (P5-S), dehydroepiandrosterone sulfate (DHA-S) and estrone sulfate (E1-S) respectively. This enzyme has a greatest affinity for P5-S, but the activity for E1-S was the highest among the three substrates. The steroid sulfatase activity in female leukocytes is significantly stronger than that in normal males (p less than 0.001) as determined by the cleavage of DHA-S. Sulfatase in leukocytes obtained from the PSD babies and RXLI patients had lower sensitivity. In the case of the mother affected with PSD, the activity was less than half of that in normal men (p less than 0.001) and the levels did not overlap with that in normal women. In patients with IV, the activities were in the normal ranges for both males and females. The measurement of leukocyte sulfatase activity would be a clinically useful tool for the diagnosis of PSD carriers and pedigree analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号