首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-cell colony-stimulating factor (CSF) is identical to macrophage growth factor and stimulates macrophage proliferation (Stanley et al., 1976, J. Exp. Med. 143: 631-647). The nature of the interaction of iodinated L-cell CSF (125I-CSF) with murine peritoneal exudate macrophages was studied. On incubation with 10 pM 125I-CSF at 0 degrees C, cellular binding of 125I-CSF reaches a stable maximum within 15 h. This is in contrast to the association behavior at higher temperatures. At 37 degrees C, cell-associated 125I-CSF levels reach, within 45 min, an unstable maximum which is up to 10-fold less than that occurring under the same conditions at 0 degrees C. At 0 degrees C, binding is saturated (approximately 5 X 10(4) sites/cell) at CSF concentrations of 1 nM. A comparison of binding and competition experiments indicates that iodinated L-cell CSF binds as effectively as L-cell CSF and that human urinary CSF and L-cell CSF equipotently compete for 125I-CSF binding. Specificity of the CSF-binding site is demonstrated by the failure of other known growth factors and hormones to compete for 125I- CSF binding. These studies and other findings suggest that 125I-CSF binding is restricted to macrophages and their precursors and to macrophage cell lines and that the binding site(s) is the receptor mediating the biological action of this CSF.  相似文献   

2.
The binding, internalization, and degradation of basic fibroblast growth factor (bFGF) in human omental microvascular endothelial cells (HOME cells) were investigated. Binding studies of bFGF in human endothelial cells have not yet been reported. Basic FGF bound to HOME cells (KD of 42.0 +/- 3.8 pM and 70,526 +/- 6121 binding sites/cell for the high-affinity sites, KD of 0.933 +/- 0.27 nM and 630,252 +/- 172,459 sites/cell for low-affinity binding sites). The number of low-affinity binding sites was found to be variable. Washing the cells with 2 M phosphate-buffered saline removed completely 125I-bFGF bound to low-affinity binding sites but decreased also the high-affinity binding. The majority of the surface-bound 125I-bFGF was removed by washing the cells with acetic acid buffer at pH 3. At 37 degrees C, 30% of the cell-associated 125I-bFGF became resistant to the acidic wash after 90 min, suggesting that this fraction of bound 125I-bFGF was internalized. At this temperature, degradation of the internalized ligand was followed after 1 h by the appearance of three major bands of 15,000, 10,000, and 8,000 Da and was inhibited by chloroquine. These results demonstrated two classes of binding sites for bFGF in HOME cells; the number of high-affinity binding sites being larger than the number reported for bovine capillary endothelial cells. The intracellular processing of bFGF in HOME cells seems to be different from that of heparin binding growth factor-1 in murine lung capillary endothelial cells and of eye-derived growth factor-1 in Chinese hamster fibroblasts.  相似文献   

3.
We investigated the binding of 125I-labeled beta interferon (IFN-beta Ser17), a nonglycosylated recombinant human fibroblast interferon in which cysteine at position 17 is replaced by serine by site-specific mutagenesis. An optimized chloramine T radiolabeling method produced a highly labeled, fully active 125I-IFN suitable for these studies. Unlike the case with the chloramine T method, incorporation of a single mole of Bolton-Hunter reagent into a mole of IFN-beta Ser17 led to nearly complete loss of biological activity. 125I-IFN-beta Ser17, prepared by the chloramine T method, bound specifically to human lymphoblastoid cells (Daudi) with a dissociation constant of 0.24 nM. The number of binding sites per cell was 4,000. In competition assays, unlabeled beta interferons (native, recombinant IFN-beta Cys17, and various preparations of IFN-beta Ser17) equally displaced labeled IFN-beta Ser17 on Daudi cells. Recombinant IFN-alpha-1 displaced 125I-IFN-beta binding to Daudi cells less efficiently than did unlabeled native or recombinant beta interferon. However, at the concentrations tested, native gamma interferon showed no competition with 125I-IFN. Our results indicate that IFN-beta Ser17 and native IFN-beta posses similar binding properties.  相似文献   

4.
Previous studies with protein tracers have shown that the luminal surface of the vascular endothelium of the bone marrow is endocytic. The endocytosis occurs through the formation of large bristle-coated vesicles (LCV). The anionic charge distribution in this process was examined at the luminal surface of the endothelial cell, At pH 1.8, colloidal iron (CI), native ferritin, and polycationic ferritin (PCF) are bound by the luminal surface of the endothelial cell, but not at the sites of LCV formation. PCF used over a pH range of 1.8--7.2 (CI is unstable at higher pH levels) revealed LCV binding of this agent in increasing manner from pH 3.5 upwards. PCF binding at low pH (1.8) at the endothelial cell surface was markedly reduced by neuraminidase. Neuraminidase did not reduce PCF binding by the endothelial cell surface nor by the LCV at higher pH levels. It is concluded that the luminal surface of the endothelial cell has exposed sialic acid groups which are absent or significantly diminished at endocytic sites. The free surface of the endothelial cells as well as the sites of endocytosis have, in addition, anionic material with a pKa higher than that of sialic acid (pKa 2.6). These anionic materials may be different at the sites of endocytosis as compared to those present at the free cell surface.  相似文献   

5.
Cryptic urokinase binding sites on human foreskin fibroblasts   总被引:13,自引:0,他引:13  
Human foreskin cells possess sites on their surfaces that specifically bind both active and diisopropylphosphofluoridate-inactivated 2 chain 54 K Da [125I]-urokinase, but do not bind the 54 K Da single chain form of urokinase. 125I-urokinase bound to these sites is not internalized and is very slow to dissociate. There are about 40,000 available binding sites per cell. Brief incubation with pH 2.5 buffer at 5 degrees C unmasks another two to six fold more sites and also extracts plasminogen activator that, based on its accessibility to trypsin, appears to be at the cell surface. This suggests that the cryptic urokinase binding sites could be sites occupied with endogenous plasminogen activator.  相似文献   

6.
Binding sites for prolactin were identified in a plasma-membrane-enriched fraction isolated from livers of mature female rats. 125I-labelled sheep prolactin prepared by the lactoperoxidase procedure retained the same molecular integrity and binding affinity as the native hormone at physiological pH. The receptors bound prolactin from different species, whereas non-lactogenic hormones were not bound. The binding of 125I-labelled sheep prolactin was activated equally by bivalent and univalent cations, bivalent cations exerting their maximal effect at much lower concentrations. The association of 125I-labelled sheep prolactin with the receptor was a time- and temperature-dependent process. Partial dissociation was detected. The binding of 125I-labelled sheep prolactin was strongly influenced by pH, with an optimum observed at pH 6.5. Receptor activity was destroyed by Pronase and phospholipase C, whereas neuraminidase increased binding. Treatment of the membranes by ribonuclease and deoxyribonuclease did not affect the binding. Binding of 125I-labelled sheep prolactin was inhibited by p-chloromercuribenzoic acid, dithiothreitol and by brief exposure to high temperatures. Scatchard analysis of the binding of 125I-labelled sheep prolactin to receptors indicated that prolactin has a high affinity for its receptor. Binding of prolactin to liver membranes showed some properties different from those observed with mammary cells. Binding by these tissues differed in pH optimum, in effects of ions, and in response to neuraminidase.  相似文献   

7.
Lipoprotein lipase (LPL) hydrolyzes triglyceride in plasma lipoprotein primarily while bound to vascular endothelial cells. LPL metabolism by cultured endothelial cells was studied. Purified radioiodinated bovine LPL bound to porcine aortic endothelial cells at 4 degrees C with an association constant of 0.18 x 10(7) m-1. Analysis of the time course of LPL dissociation from endothelial cells at 4 degrees C yielded a dissociation rate constant of 3.9 x 10(-6)s-1. After 1 h at 37 degrees C, 28% of the LPL initially bound to the cell surface was no longer releasable by heparin or trypsin treatments, suggesting that LPL was internalized by the cells. Addition of heparin to the medium or pretreatment of the cells with heparinase markedly reduced the amount of LPL internalized, establishing a requirement for cell surface heparan sulfate proteoglycans in the process. When cells containing internalized LPL were incubated at 37 degrees C, a time-dependent increase in the amount of LPL in the medium and a corresponding decrease in LPL associated with the cells was found. This suggested that internalized LPL was released back into the medium. The catalytic activity, molecular size, and heparin-binding characteristics of the released LPL was similar to native LPL. Addition of either heparin, heparinase, or excess unlabeled LPL to prevent the rebinding of released 125I-LPL to the cell surface increased the amount of 125I-LPL present in the medium, suggesting that there is a process of recycling of 125I-LPL bound to the cell surface. Studies examining the effect of pH on dissociation of LPL from its binding site showed less dissociation of cell surface bound LPL at pH 5.5 compared with pH 7.4 and 8.5. These results suggest that even at acidic pH as in endocytotic vesicles, LPL remains bound to proteoglycans and this may facilitate the recycling of internalized LPL molecules.  相似文献   

8.
We characterized binding and endocytosis of 125I-bovine lactoferrin by isolated rat hepatocytes. Iron-depleted (apo-Lf), approximately 30% saturated (Lf), and iron-saturated (holo-Lf) lactoferrin were used. At 4 degrees C, cells bound 125I-apo-Lf and 125I-holo-Lf with nearly identical apparent first order kinetics (t1/2 = approximately 42 min). Holo-Lf and apo-Lf competed with each other for binding. Hepatocytes bound lactoferrin optimally at pH greater than or equal to 7 but poorly at pH less than or equal to 6. Ca2+ (greater than or equal to 100 microM) enhanced Lf binding to cells, and holo-Lf remained monomeric with Ca2+ present as determined by gel filtration chromatography. With Ca2+, cells exhibited approximately 10(6) high affinity sites (Kd approximately 20 nM) and approximately 10(7) low affinity sites (Kd approximately 700 nM) for both apo- and holo-Lf. Without Ca2+, cells bound 125I-holo-Lf by the low affinity component only. EGTA and dextran sulfate together released greater than or equal to 90% 125I-Lf prebound at 4 degrees C, but individually removed separate populations of surface-bound 125I-Lf. Cells bound 125I-Lf in a Ca(2+)-dependent manner with dextran sulfate present. We conclude that the high affinity but not the low affinity sites require Ca2+; only the low affinity sites are dextran sulfate-sensitive. Neither transferrin nor asialo-orosomucoid blocked lactoferrin binding to hepatocytes. Some cationic proteins but not others inhibited lactoferrin binding. At 37 degrees C, hepatocytes endocytosed 125I-apo-Lf and 125I-holo-Lf similarly, and hyperosmolality (greater than 500 mmol/kg) blocked uptake by approximately 90%. These data support the proposal that hepatocytes regulate blood lactoferrin concentration by receptor-mediated endocytosis.  相似文献   

9.
Bombesin is a tetradecapeptide which stimulates insulin secretion in vivo by isolated islets and by HIT-T15 cells, a clonal line of hamster pancreatic-islet cells. In the present study we have used [125I-Tyr4]bombesin to characterize bombesin receptors in HIT-T15 cells. [125I-Tyr4]Bombesin binding was time- and temperature-dependent: maximum binding occurred after 45 min, 90 min and 10 h at 37, 22 and 4 degrees C respectively. Thereafter, cell-associated radioactivity declined at 37 degrees C and 22 degrees C but not at 4 degrees C. Scatchard analysis of [125I-Tyr4]bombesin binding measured at 4 degrees C showed that HIT-T15 cells contain a single class of binding sites (approximately equal to 85000/cell) with an apparent Kd of 0.9 +/- 0.11 nM. Structurally unrelated neuropeptides did not compete for [125I-Tyr4]bombesin binding. However, the relative potencies of bombesin and four bombesin analogues in inhibiting the binding of [125I-Tyr4]bombesin correlated with their ability to stimulate insulin release. Receptor-mediated processing of [125I-Tyr4]bombesin was examined by using an acid wash (0.2 M-acetic acid/0.5 M-NaCl, pH 2.5) to dissociate surface-bound peptide from the cells. Following [125I-Tyr4]bombesin binding at 4 degrees C, more than 85% of the cell-associated radioactivity could be released by acid. When the temperature was then increased to 37 degrees C, the bound radioactivity was rapidly (t1/2 less than 3 min) converted into an acid-resistant state. These results indicate that receptor-bound [125I-Tyr4]bombesin is internalized in a temperature-dependent manner. In fact, the entire ligand-receptor complex appeared to be internalized, since pretreatment of cells with 100 nM-bombesin for 90 min at 37 degrees C decreased the subsequent binding of [125I-Tyr4]bombesin by 90%. The chemical nature of the cell-associated radioactivity was determined by reverse-phase chromatography of the material extracted from cells after a 30 min binding incubation at 37 degrees C. Although 70% of the saturably bound radioactivity was co-eluted with intact [125I-Tyr4]bombesin 90% of the radioactivity subsequently dissociated from cells chromatographed as free iodide. At least some of the degradation of receptor-bound [125I-Tyr4]bombesin appeared to occur in lysosomes, since chloroquine increased the cellular accumulation of [125I-Tyr4]bombesin at 37 degrees C and slowed the release of radioactivity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Scatchard analysis of binding of 125I-basic fibroblast growth factor (FGF) to baby hamster kidney (BHK) cells revealed the presence of two binding sites: a high affinity site with KD of 20 pM and 80,000 sites per cell and a low affinity site with KD of about 2 nM and 600,000 sites per cell. The binding to the two sites could be separated by first washing the cells with 2 M NaCl at pH 7.5 which released the low affinity binding and then extracting the cells with 0.5% Triton X-100 to recover the 125I-basic FGF bound to high affinity sites. The binding to the high affinity site was acid sensitive, suggesting that it represented binding to the receptor. Binding to the low affinity site could be competed strongly by heparin and less strongly by heparan sulfate but not by chondroitin sulfate, dermatan sulfate, or keratan sulfate. Treatment of BHK cells with heparinase abolished 62% of the low affinity binding, suggesting that the low affinity binding represented binding to cell-associated, heparin-like molecules. A variety of other cell types, including bovine capillary endothelial (BCE) cells, also demonstrated both low and high affinity binding sites. To test whether the low affinity binding might play a role in the basic FGF stimulation of plasminogen activator (PA) production by BCE cells, heparin was added to BCE cultures at concentrations which totally blocked binding of 125I-basic FGF to the low affinity sites. Addition of the heparin did not diminish the increased PA production induced by basic FGF. This suggests that the low affinity binding has no direct role in the stimulation of PA production in BCE cells.  相似文献   

11.
Recent observations support an active role for the vascular endothelial cell in the induction and evolution of the inflammatory response. Since prior studies suggested that cultured bovine endothelial cells express high affinity binding sites for the neutrophil chemotactic oligopeptide formyl methionyl-leucyl-phenylalanine (f-Met-Leu-Phe), we sought to further characterize the interaction between formyl peptide chemoattractants and human vascular endothelial cells. Cultured human umbilical vein endothelial cells and peripheral blood neutrophils specifically bound f-Met-Leu-[3H]Phe, whereas specific binding to cultured fibroblasts, smooth muscle, and epithelial cells was negligible. Endothelial cells expressed 3.6 +/- 0.7 X 10(5) binding sites/cell with a Kd of 210 +/- 31 nM. Although the hexapeptide formyl norleucyl-leucyl-phenylalanyl-norleucyl-tyrosyl-lysine (f-Nle-Leu-Phe-Nle-Tyr-Lys) and the tetrapeptide f-Met-Leu-Phe-Lys completed with f-Met-Leu-[3H]Phe for binding to endothelial cells, specific binding of 125I-f-Nl-Leu-Phe-Tyr-Lys or f-Met-Leu-Phe-Lys-fluorescein to endothelial cells was not observed, suggesting that steric constraints on formyl peptide binding differ between endothelial cells and leukocytes. At 37 degrees C, cell-associated f-Met-Leu-[3H]Phe greatly exceeded that bound at 0 degrees C and was incorporated predominantly into a nondisplaceable compartment. Release of f-Met-Leu-[3H]Phe or radioactive breakdown products from this compartment was time- and temperature-dependent with a t1/2 of approximately equal to 20 min at 37 degrees C. Resolution of the radioactive products released from f-Met-Leu-[3H]Phe-loaded endothelial cells by thin layer chromatography indicated that greater than or equal to 57% of the released material co-migrated with intact f-Met-Leu-[3H]Phe. Degradative release was blocked by agents that interfere with lysosomal acidification. The radioactive material released from f-Met-Leu-[3H]Phe-loaded endothelial cells bound specifically to neutrophils. This binding was inhibited 50.2 +/- 6.4% by a greater than or equal to 10(3)-fold excess of nonradioactive f-Met-Leu-Phe whereas binding of authentic f-Met-Leu-[3H]Phe was inhibited 89.4 +/- 3.0%. Supernatant obtained from f-Met-Leu-[3H]Phe-loaded endothelial cells elicited a rise in neutrophil cytosolic free calcium ([Ca2+]i) measured by quin2 fluorescence. The change in neutrophil [Ca2+]i depended on ligand binding to the neutrophil formyl peptide receptor since endothelial supernatants were devoid of activity in the presence of the f-Met-Leu-Phe antagonist, tert-butoxycarbonyl-Phe-Leu-Phe-Leu-Phe.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
S J Frost  R H Raja  P H Weigel 《Biochemistry》1990,29(45):10425-10432
125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4 degrees C increased greater than 10-fold at pH 5.0 as compared to pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
125I-concanavalin A (125I-Con A) was found to be equally effective as native Con A in binding to and agglutinating cells of Dictyostelium discoideum, suggesting that iodination of the molecule had no effect on the interaction of the protein with the cell surface. Almost all of the 125I-Con A binding to the cells was inhibited by alpha-methyl glucoside. The binding of 125I-Con A to the cells was extremely rapid, and once bound, the molecule was not readily displaced by prolonged incubation or by the addition of excess native concanavalin A (Con A). In contrast, the 125I-Con A was displaced rapidly from the cell surface by alpha-methyl glucoside. The binding of 125I-Con A to D. discoideum was identical at 22 degrees and 4 degrees, and was unaffected by metabolic inhibitors, suggesting that the protein was not subject to endocytosis. The cell surface Con A binding sites became saturated at high 125I-Con A concentrations. Scatchard plots of the data indicated that growing cells possessed 4 X 10(7) sites/cell, all of equal affinity. Similar plots for "aggregation phase" cells indicated at least two classes of binding sites. A small proportion of the sites had an affinity close to that for the sites on growing cells, but the majority of the sites had a markedly decreased affinity. The total number of binding sites increased only slightly during aggregation to 5.6 X 10(7) sites/cell.  相似文献   

14.
GH4C1 cells, a clonal strain of rat pituitary tumor cells, have high-affinity, functional receptors for the inhibitory hypothalamic peptide somatostatin (SRIF) and for epidermal growth factor (EGF). In this study we have examined the events that follow the initial binding of SRIF to its specific plasma membrane receptors in GH4C1 cells and have compared the processing of receptor-bound SRIF with that of EGF. When cells were incubated with [125I-Tyr1]SRIF at temperatures ranging from 4 to 37 degrees C, greater than 80% of the specifically bound peptide was removed by extraction with 0.2 M acetic acid, 0.5 M NaCl, pH 2.5. In contrast, the subcellular distribution of receptor-bound 125I-EGF was temperature dependent. Whereas greater than 95% of specifically bound 125I-EGF was removed by acid treatment after a 4 degrees C binding incubation, less than 10% was removed when the binding reaction was performed at 22 or 37 degrees C. In pulse-chase experiments, receptor-bound 125I-EGF was transferred from an acid-sensitive to an acid-resistant compartment with a half-time of 2 min at 37 degrees C. In contrast, the small amount of [125I-Tyr1]SRIF that was resistant to acid treatment did not increase during a 2-h chase incubation at 37 degrees C. Chromatographic analysis of the radioactivity released from cells during dissociation incubations at 37 degrees C showed that greater than 90% of prebound 125I-EGF was released as 125I-tyrosine, whereas prebound [125I-Tyr1]SRIF was released as a mixture of intact peptide (55%) and 125I-tyrosine (45%). Neither chloroquine (0.1 mM), ammonium chloride (20 mM), nor leupeptin (0.1 mg/ml) increased the amount of [125I-Tyr1]SRIF bound to cells at 37 degrees C. Furthermore, chloroquine and leupeptin did not alter the rate of dissociation or degradation of prebound [125I-Tyr1]SRIF. In contrast, these inhibitors increased the amount of cell-associated 125I-EGF during 37 degrees C binding incubations and decreased the subsequent rate of release of 125I-tyrosine. The results presented indicate that, as in other cell types, EGF underwent rapid receptor-mediated endocytosis in GH4C1 cells and was subsequently degraded in lysosomes. In contrast, SRIF remained at the cell surface for several hours although it elicits its biological effects within minutes. Furthermore, a constant fraction of the receptor-bound [125I-Tyr1]SRIF was degraded at the cell surface before dissociation. Therefore, after initial binding of [125I-Tyr1]SRIF and 125I-EGF to their specific membrane receptors, these peptides are processed very differently in GH4C1 cells.  相似文献   

15.
CSF-1 is a subclass of the colony-stimulating factors that specifically stimulates the growth of mononuclear phagocytes. We used the binding of 125I-CSF-1 at 0 degrees C by single cell suspensions from various murine tissues, in conjunction with radioautography, to determine the frequency of binding cells, their identity, and the number of binding sites per binding cell. For all tissues examined, saturation of binding sites was achieved within 2 h at 2--3 x 10(-10) M 125I-CSF-1. The binding was irreversible and almost completely blocked by a 2 h preincubation with 5 x 10(-10) M CSF-1. 125I-CSF-1 binding was exhibited by 4.3% of bone marrow cells, 7.5% of blood mononuclear cells, 2.4% of spleen cells, 20.5% of peritoneal cells, 11.8% of pulmonary alveolar cells and 0.4% of lymph node cells. Four morphologically distinguishable cell types bound 125I-CSF-1: blast cells; mononuclear cells with a ratio of nuclear to cytoplasmic area (N/C) greater than 1; cells with indented nuclei; and mononuclear cells with N/C less than or equal to 1. No CSF-1 binding cells were detected among blood granulocytes or thymus cells. Bone marrow promyelocytes, myelocytes, neutrophilic granulocytes, eosinophilic granulocytes, nucleated erythroid cells, enucleated erythrocytes, and megakaryocytes also failed to bind. The frequency distribution of grain counts per cell for blood mononuclear cells was homogenous. In contrast, those for bone marrow, spleen, alveolar, and peritoneal cells were heterogeneous. The monocytes in blood or bone marrow (small cells, with either indented nuclei or with N/C greater than 1) were relatively uniformly labeled, possessing approximately 3,000 binding sites per cell. Larger binding cells (e.g., alveolar cells) may possess higher numbers of receptors. It is concluded that CSF-1 binding is restricted to mononuclear phagocytic cells and their precursors and that it can be used to identify both mature and immature cells of this series.  相似文献   

16.
Virus-induced human alpha interferon (HuIFN-alpha) derived from Namalwa cells and purified to a specific activity of 2 X 10(8) units/mg of protein was radiolabeled with 125I-labeled Bolton and Hunter reagent to a specific activity of 4-12 microCi/micrograms of protein. The binding of this 125I-IFN to bovine kidney cells was examined at 4 degrees C. Scatchard analysis of the binding data indicate the presence of 650 binding sites/cell and binding of the ligand with an apparent Kd of 6 X 10(-11) M. Trypsin or acid treatment of cells to which 125I-IFN was bound resulted in the release of greater than or equal to 77% of the radioactivity, indicating a majority of radiolabeled material was bound to the cell surface. Antibodies against human leukocyte IFN but not antibodies against human fibroblast IFN inhibited the binding of radiolabeled IFN to the cells. The binding of 125I-IFN was not inhibited by a 75-fold molar excess of mouse IFN but was inhibited 30% by a 200-fold molar excess of human beta (fibroblast) IFN. These data are compatible with the Lower biological activities of these IFNs on bovine kidney cells. Several Escherichia coli derived HuIFN-alpha s inhibited the binding of the radiolabeled IFN to the same extent as native HuIFN-alpha s, but four fragments of HuIFN-alpha 1, an E. coli-derived 86 amino acid NH2-terminal fragment as well as 3 different synthetic carboxy-terminal fragments of 140, 56, or 46 amino acids did not inhibit binding.  相似文献   

17.
The mode of transport of ceruloplasmin (CP) into the liver was investigated in fractionated liver cell suspensions. Incubation of 125I-CP at 4 degrees C with these different fractions led to its binding only to endothelial cells but not Kupffer cells and hepatocytes. Incubation at 37 degrees C led to rapid uptake of 125I-CP by endothelium, but cell-associated radioactivity declined after 15 min, which suggests the release of the labeled substance. Internalization was confirmed by fractionation of surface-bound and internalized ligand. The released label now acquired binding potential for fresh target hepatocytes, and the binding was inhibitable with asialoceruloplasmin but not native CP. This suggested that the released molecule was modified in the endothelium by desialation. Desialation was confirmed by incubation of endothelium with double-labeled CP (3H label on sialic acid and 125I on the protein part). We conclude that in the liver, CP is first recognized and taken up by endothelial cells that are endowed with appropriate surface receptors for the protein. Endothelium then modifies the molecule by desialation to expose the penultimate galactosyl residues. The modified molecule is then released, recognized, and taken up by hepatocytes through their membrane galactosyl-recognition system. These findings are consistent with the role of endothelium as an active mediator of molecular transport between blood and tissue, and further assign a biological role for the galactosyl-recognition system in hepatocytes.  相似文献   

18.
Studies have been made on the binding of 125I-glucagon by isolated chick hepatocytes. It was shown that pH and temperature dependence of the binding does not differ from that in rat hepatocytes. Optimum binding was observed at pH 7.6, the rate of binding being higher at 37 degrees C as compared to that at 20 degrees C, although the binding capacity increased with the decrease in the temperature. Unlabeled glucagon was able to compete with 125I-glucagon at the binding sites. Scatchard plot was found to be curvilinear revealing two classes of the binding sites with Kd values 10(-9) and 10(-7) M at temperatures 20 and 37 degrees C correspondingly. Earlier studies revealed in rats the binding sites of a sole class with Kd value 10(-9) M. Preincubation of cells with native glucagon results in changes of labeled glucagon binding, the effect being proportional to the concentration of native glucagon. Preincubation effect was observed at 37 degrees C, being absent at 20 degrees C; the effect was due to the decrease in the number of both high and low affinity binding sites. The presence of down-regulation of glucagon receptors in chick hepatocytes is suggested.  相似文献   

19.
Recombinant murine GM-CSF produced in Escherichia coli was purified to homogeneity and tested in parallel with purified native GM-CSF. Both recombinant and native GM-CSF stimulated granulocyte and/or macrophage colony formation by adult and fetal mouse progenitor cells, and with adult marrow cells the specific activity of the recombinant GM-CSF (25 X 10(8) U/mg) was similar to that of the native form (15 X 10(8) U/mg). At high concentrations (greater than 200 U/ml), both forms of GM-CSF also stimulated eosinophil colony formation by adult marrow cells and, at very high concentrations (greater than 800 U/ml), megakaryocyte and some erythroid and mixed-erythroid colony formation. Recombinant GM-CSF was as effective in stimulating the proliferation of the GM-CSF-dependent cell line FD as the native molecule. Both recombinant and native GM-CSF were able to induce partial differentiation in colonies of WEHI-3B myeloid leukemic cells. Recombinant GM-CSF competed effectively for the binding of 125I-labeled native GM-CSF to hemopoietic cells, and antiserum to recombinant GM-CSF also neutralized the biological activity of native GM-CSF. The bacterially synthesized GM-CSF was a slightly more effective stimulus for megakaryocyte colony formation than the native molecule. The demonstration that purified bacterially synthesized GM-CSF is biologically active in vitro now permits studies to be undertaken on the in vivo effects of this material.  相似文献   

20.
Fibronectin binding to a Streptococcus pyogenes strain.   总被引:21,自引:1,他引:20       下载免费PDF全文
In previous studies, Staphylococcus aureus has been shown to bind fibronectin (P. Kuusela, Nature (London) 276:718-720, 1978), an interaction that may be important in bacterial attachment and opsonization. Recently some strains of streptococci of serological groups A, C, and G were also found to bind fibronectin. The binding to one selected strain of Streptococcus pyogenes has been characterized here. The binding of [125I]fibronectin to streptococcal cells resembles that to staphylococcal cells and was found to be time dependent, functionally irreversible, and specific in the sense that unlabeled proteins other than fibronectin did not block binding. Bacteria incubated with proteases largely lost their ability to bind fibronectin, and material released from the streptococci by a brief trypsin digestion contained active fibronectin receptors. This material inhibited the binding of [125I]fibronectin to the streptococci. The inhibitory activity was adsorbed on a column of fibronectin-Sepharose but not on a column of unsubstituted Sepharose 4B or egg albumin Sepharose. The receptor appeared to be a protein nature since the inhibitory activity of the trypsinate was destroyed by papain and was not absorbed on a column containing monoclonal antibodies directed against lipoteichoic acid bound to protein A-Sepharose. Binding sites in fibronectin for streptococci and staphylococci, respectively, were localized by analyzing the ability of isolated fragments to inhibit [125I]fibronectin binding to bacteria and by adsorbing 125I-labeled tryptic fragments with staphylococcal and streptococcal cells. Both species of bacteria appeared to preferentially bind a fragment (Mr = approximately 25,000) originating from the N-terminal region of the protein. In addition, streptococci also bound a slightly smaller fragment (Mr = approximately 23,000). Fibronectin receptors solubilized from either streptococci or staphylococci inhibited the binding of fibronectin to both species of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号