首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel plant defense gene, hsr203J, whose corresponding mRNA accumulates preferentially during the incompatible interaction of tobacco (Nicotiana tabacum L.) with a pathogenic bacterium, Pseudomonas solanacearum, has been isolated and sequenced. No sequence homology of the putative product of this gene has been found in data bases. Evidence is presented here that the hsr203J gene promoter, when fused to the GUS reporter gene, is selectively expressed in response to the hypersensitive response (HR)-inducing bacteria in tobacco protoplasts and that the sequences responsible for this response are contained within 1.4 kb of the 5′ noncoding region. The temporal and spatial patterns of hsr203J activation in leaves and roots inoculated with P. solanacearum indicate that the hsr 203J promoter exhibits a rapid (3–6 h post-inoculation) and high level of induction only in plant cells inoculated with the HR-inducing bacterial isolate. In addition, this gene promoter which does not respond to various stress conditions and is only very weakly induced during compatible interactions, is strongly dependent on hrp (hypersensitive response and pathogenicity) genes of P. solanacearum. These data indicate that the hsr 203J gene promoter exhibits new and original characteristics of activation with regard to the plant defense genes studied so far; its spatial and temporal program of activation together with its specific induction during the HR underline the importance of this gene as a molecular tool for studying the establishment and regulation of the HR.  相似文献   

2.
Six cDNA clones whose corresponding mRNAs accumulate early during the hypersensitive reaction in tobacco leaves have been classified into 2 groups according to their maximum levels of accumulation in an incompatible versus a compatible interaction withPseudomonas solanacearum. We present evidence that, at least in the first stages of the interaction, tobacco cell suspensions retain the ability to respond differentially to compatible and incompatible isolates ofP. solanacearum.In addition, studies on the effect of a fungal elicitor on the accumulation of the mRNAs corresponding to the cDNA clones in cell suspensions indicate that only one group of genes responds to this treatment.  相似文献   

3.
A region of approximately 22 kb of DNA defines the large hrp gene cluster of strain GMI1000 of Pseudomonas solanacearum. The majority of mutants that map to this region have lost the ability to induce disease symptoms on tomato plants and are no longer able to elicit a hypersensitive reaction (HR) on tobacco, a nonhost plant. In this study we present the complementation analysis and nucleotide sequence of a 4772 by region of this hrp gene cluster. Three complete open reading frames (ORFs) are predicted within this region. The corresponding putative proteins, HrpN, HrpO and HpaP, have predicted sizes of 357, 690 and 197 amino acids, respectively, and predicted molecular weights of 38607, 73 990 and 21959 dalton, respectively. HrpN and HrpO are both predicted to be hydrophobic proteins with potential membrane-spanning domains and HpaP is rich in proline residues. A mutation in hpaP (for hrp associated) does not affect the HR on tobacco or the disease on tomato plants. None of the proteins is predicted to have an N-terminal signal sequence, which would have indicated that the proteins are exported. Considerable sequence similarities were found between HrpO and eight known or predicted prokaryotic proteins: LcrD of Yersinia pestis and Y. enterocolitica, FlbF of Caulobacter crescentus, F1hA of Bacillus subtilis, MxiA and VirH of Shigella flexneri, InvA of Salmonella typhimurium and HrpC2 of Xanthomonas campestris pv. vesicatoria. These homologies suggest that certain hrp genes of phytopathogenic bacteria code for components of a secretory system, which is related to the systems for secretion of flagellar proteins, Ipa proteins of Shigella flexneri and the Yersinia Yop proteins. Furthermore, these homologous proteins have the common feature of being implicated in a distinct secretory mechanism, which does not require the cleavage of a signal peptide. The sequence similarity between HrpO and HrpC2 is particularly high (66% identity and 81 % similarity) and the amino acid sequence comparison between these two proteins presented here reveals the first such sequence similarity to be shown between Hrp proteins of P. solanacearum and X. campestris. An efflux of plant electrolytes was found to be associated with the interactions between P. solanacearum and both tomato and tobacco leaves. This phenomenon may be part of the mechanism by which hrp gene products control and determine plant-bacterial interactions, since hrpO mutants induced levels of leakage which were significantly lower than those induced by the wild type on each plant.  相似文献   

4.
A family of genes, the so-called msr genes (multiple stimulus response), has recently been identified on the basis of sequence homology in various plant species. Members of this gene family are thought to be regulated by a number of environmental or developmental stimuli, although it is not known whether any one member responds more specifically to one stimulus, or whether each gene member responds to various environmental stimuli. In this report, we address this question by studying the tobacco msr gene str246C. Using transgenic tobacco plants containing 2.1 kb of 5 flanking DNA sequence from the str246C gene fused to the -glucuronidase (GUS) coding region, the complex expression pattern of the str246C promoter has been characterized. Expression of the str246C promoter is strongly and rapidly induced by bacterial, fungal and viral infection and this induction is systemic. Elicitor preparations from phytopathogenic bacteria and fungi activate the str246C promoter to high levels, as do wounding, the application of auxin, auxin and cytokinin, salicylic acid or copper sulfate, indicating the absence of gene specialization within the msr gene family, at least for str246C. In addition, GUS activity was visualized. histochemically in root meristematic tissues of tobacco seedlings and is restricted to roots and sepals of mature plants. Finally, analysis of a series of 5 deletions of the str246C promoter-GUS gene fusion in transgenic tobacco plants confirms the involvement of multiple regulatory elements. A region of 83 by was found to be necessary for induction of promoter activity in response to Pseudomonas solanacearum, while auxin inducibility and root expression are apparently not controlled by this element, since its removal does not abolish either response. An element of the promoter with a negative effect on promoter activation by P. solanacearum was also identified.Joint first authors  相似文献   

5.
We have purified a chloroplast elongation factor Tu (EF-Tu) from tobacco (Nicotiana tabacum) and determined its N-terminal amino acid sequence. Two distinct cDNAs encoding EF-Tu were isolated from a leaf cDNA library of N. sylvestris (the female progenitor of N. tabacum) using an oligonucleotide probe based on the EF-Tu protein sequence. The cDNA sequence and genomic Southern analyses revealed that tobacco chloroplast EF-Tu is encoded by two distinct genes in the nuclear genome of N. sylvestris. We designated the corresponding gene products EF-Tu A and B. The mature polypeptides of EF-Tu A and B are 408 amino acids long and share 95.3% amino acid identity. They show 75–78% amino acid identity with cyanobacterial and chloroplast-encoded EF-Tu species.  相似文献   

6.
An Arabidopsis cDNA clone encoding 4-coumarate:CoA ligase (4CL), a key enzyme of phenylpropanoid metabolism, was identified and sequenced. The predicted amino acid sequence is similar to those of other cloned 4CL genes. Southern blot analysis indicated that 4CL is single-copy gene in Arabidopsis. Northern blots showed that 4CL expression was activated early during seedling development. The onset of 4CL expression was correlated with the onset of lignin deposition in cotyledons and roots 2–3 days after germination. The timing of the expression of a parsley 4CL1-GUS fusion in transgenic Arabidopsis seedlings was examined in parallel and was very similar to that of endogenous 4CL. In mature plants, highest 4CL expression was observed in bolting stems, where relatively large amounts of lignin accumulate. Both 4CL and 4CL1-GUS mRNA accumulation was strongly and transiently activated by wounding of mature Arabidopsis leaves. 4CL expression was specifically activated within 6 h after infiltration of Arabidopsis ecotype Columbia leaves with a Pseudomonas syringae pv. maculicola strain harboring the bacterial avirulence gene avrB, which causes in incompatible interaction. The timing of 4CL activation was identical to the previously observed activation of PAL gene expression in this interaction. No activation of 4CL expression was observed in a compatible interaction caused by a Pseudomonas syringae pv. maculicola strain without avrB.  相似文献   

7.
γ-Aminobutyrate transaminase (GABA-T) catalyzes the conversion of GABA to succinic semialdehyde. Using differential display PCR and cDNA library screening, a full-length GABA-T cDNA (OsGABA-T) was isolated from rice (Oryza sativa) leaves infected with an incompatible race of Magnaporthe grisea. The deduced amino acid sequence comprises 483 amino acid residues and shares 85–69% identity with GABA-T sequences from other plants. OsGABA-T expression is induced by blast fungus infection, mechanical wounding and ultraviolet radiation in rice leaves and is not detected in normal rice organs. This gene is also induced by defense signal molecules such as salicylic acid and abscisic acid, but not by jasmonic acid. Our data suggest that OsGABA-T (GABA shunt) may play a role in restricting the levels of cell death during the host–pathogen interaction.  相似文献   

8.
Type IV pili (T4P) are virulence factors in various pathogenic bacteria of animals and plants that play important roles in twitching motility, swimming motility, biofilm formation, and adhesion to host cells. Here, we genetically characterized functional roles of a putative T4P assembly protein TapV (Rsc1986 in reference strain GMI1000) and its homologue Rsp0189, which shares 58% amino acid identity with TapV, in Ralstonia solanacearum. Deletion of tapV, but not rsp0189, resulted in significantly impaired twitching motility, swimming motility, and adhesion to tomato roots, which are consistent as phenotypes of the pilA mutant (a known R. solanacearum T4P-deficient mutant). However, unlike the pilA mutant, the tapV mutant produced more biofilm than the wild-type strain. Our gene expression studies revealed that TapV, but not Rsp0189, is important for expression of a type III secretion system (T3SS, a pathogenicity determinant of R. solanacearum) both in vitro and in planta, but it is T4P independent. We further revealed that TapV affected the T3SS expression via the PhcA–TapV–PrhG–HrpB pathway, consistent with previous reports that PhcA positively regulates expression of pilA and prhG. Moreover, deletion of tapV, but not rsp0189, significantly impaired the ability to migrate into and colonize xylem vessels of host plants, but there was no alteration in intercellular proliferation of R. solanacearum in tobacco leaves, which is similar to the pilA mutant. The tapV mutant showed significantly impaired virulence in host plants. This is the first report on the impact of T4P components on the T3SS, providing novel insights into our understanding of various biological functions of T4P and the complex regulatory pathway of T3SS in R. solanacearum.  相似文献   

9.
10.
A new WRKY gene was cloned from Brassica chinensis by rapid amplification of cDNA ends (RACE). The full-length cDNA of BcWRKY was 1175 bp long and contained a 924-bp open reading frame (ORF) encoding a putative W-box-binding protein of 308 amino acids. The predicted BcWRKY protein was found to have a potential bipartite nuclear localization sequence (NLS-PB) in its N-terminal region followed by a WRKY DNA-binding domain. Bioinformatic analysis revealed that BcWRKY resembled other WRKY domain-containing proteins from Arabidopsis thaliana (AtWRKY18), tobacco (WIZZ), parsley (PcWRKY4), and wild oat (ABF2). Expression of the BcWRKY gene could be induced by salicylic acid (SA) and influenced by Pseudomonas syringae pv. tomato strain DC3000 infection and wounding treatment. Our study implies that BcWRKY might have similar functions possessed by other WRKY genes, such as inducing the expression of some defense-related genes and increasing plants’ disease resistance ability. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 5, pp. 816–824. The text was submitted by the authors in English.  相似文献   

11.
Summary We previously reported the isolation of rgp1, a gene from rice, which encodes a ras-related GTP-binding protein, and subsequently showed that the gene induces specific morphological changes in transgenic tobacco plants. Here, we report the isolation and characterization of an rgp1 homologue, rgp2, from rice. The deduced rgp2 protein sequence shows 53% identity with the rice rgp1 protein, but 63% identity with both the marine ray ora3 protein, which is closely associated with synaptic vesicles of neuronal tissue, and the mammalian rab11 protein. Conservation of particular amino acid sequence motifs places rgp2 in the rab/ypt subfamily, which has been implicated in vesicular transport. Northern blot analysis of rgp1 and rgp2 suggests that both genes show relatively high, but differential, levels of expression in leaves, stems and panicles, but low levels in roots. In addition, whereas rgp1 shows maximal expression at a particular stage of plantlet growth, rgp2 is constitutively expressed during the same period. Southern blot analysis suggests that, in addition to rgp1 and rgp2, several other homologues exist in rice and these may constitute a small multigene family.  相似文献   

12.
Pathogenesis-related proteins (PRs) are associated with the development of systemic acquired resistance (SAR) against further infection enforced by fungi, bacteria and viruses. PR1a is the first PR-1 member that could be purified and characterized. Previous studies have reported its role in plants’ resistance system against oomycete pathogens. However, the role of PR1a in Solanaceae plants against the bacterial wilt pathogen Ralstonia solanacearum remains unclear. To assess roles of NtPR1a in tobacco responding to R. solanacearum, we performed overexpression experiments in Yunyan 87 plants (a susceptible tobacco cultivar). The results illuminated that overexpression of NtPR1a contributed to improving resistance to R. solanacearum in tobacco Yunyan 87. Specifically speaking, NtPR1a gene could be induced by exogenous hormones like salicylic acid (SA) and pathogenic bacteria R. Solanacearum. Moreover, NtPR1a-overexpressing tobacco significantly reduced multiple of R. solanacearum and inhibited the development of disease symptoms compared with wild-type plants. Importantly, overexpression of NtPR1a activated a series of defense-related genes expression, including the hypersensitive response (HR)-associated genes NtHSR201 and NtHIN1, SA-, JA- and ET-associated genes NtPR2, NtCHN50, NtPR1b, NtEFE26, and Ntacc oxidase, and detoxification-associated gene NtGST1. In summary, our results suggested that NtPR1a-enhanced tobacco resistance to R. solanacearum may be mainly dependent on activation of the defense-related genes.  相似文献   

13.
Pseudomonas putida GJ31 harbors a degradative pathway for chlorobenzene via meta-cleavage of 3-chlorocatechol. Pseudomonads using this route for chlorobenzene degradation, which was previously thought to be generally unproductive, were isolated from various contaminated environments of distant locations. The new isolates, Pseudomonas fluorescens SK1 (DSM16274), Pseudomonas veronii 16-6A (DSM16273), Pseudomonas sp. strain MG61 (DSM16272), harbor a chlorocatechol 2,3-dioxygenase (CbzE). The cbzE-like genes were cloned, sequenced, and expressed from the isolates and a mixed culture. The chlorocatechol 2,3-dioxygenases shared 97% identical amino acids with CbzE from strain GJ31, forming a distinct family of catechol 2,3-dioxygenases. The chlorocatechol 2,3-dioxygenase, purified from chlorobenzene-grown cells of strain SK1, showed an identical N-terminal sequence with the amino acid sequence deduced from cloned cbzE. In all investigated chlorobenzene-degrading strains, cbzT-like genes encoding ferredoxins are located upstream of cbzE. The sequence data indicate that the ferredoxins are identical (one amino acid difference in CbzT of strain 16-6A compared to the others). In addition, the structure of the operon downstream of cbzE is identical in strains GJ31, 16-6A, and SK1 with genes cbzX (unknown function) and the known part of cbzG (2-hydroxymuconic semialdehyde dehydrogenase) and share 100% nucleotide sequence identity with the entire downstream region. The current study suggests that meta-cleavage of 3-chlorocatechol is not an atypical pathway for the degradation of chlorobenzene.This publication is dedicated to the memory of Olga V. Maltseva, who contributed greatly to our current knowledge of biochemistry of degradative pathways for chloroaromatic compounds.This publication is dedicated to Prof. Dr. Hans G. Schlegel in honor of his 80th birthday.  相似文献   

14.
15.
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium mehloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 by upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactived in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.  相似文献   

16.
17.
18.
Li  Shili  Xu  Chen  Wang  Jiao  Guo  Bing  Yang  Liang  Chen  Juanni  Ding  Wei 《Plant and Soil》2017,412(1-2):381-395
Aim

The secretion of allelochemicals from plant roots plays a key role in soil sickness and soil-borne disease. The goal of this study was to investigate the role of allelopathic chemicals in Ralstonia solanacearum-infected tobacco roots.

Methods

The organic acids investigated in the present study are major components of tobacco root exudates. Through a swarming assay, we assessed the chemotaxis and colonization of R. solanacearum in response to organic acids.

Results

Fumaric acid was detected, and the results showed that this acid could serve as a semiochemical for attracting R. solanacearum and inducing the formation of biofilms of this species. The results also revealed that cinnamic and myristic acids play significant roles on swarming motility and chemotaxis. In addition, cinnamic, myristic and fumaric acids could enhance the expression of chemotaxis- and motility-related genes in R. solanacearum cultured in minimal medium. Furthermore, these three acids promote R. solanacearum colonization and accelerate disease progression in tobacco.

Conclusion

Cinnamic, myristic and fumaric acids could serve as semiochemical attractants to induce the colonization and infection of R. solanacearum. The results of the present study enhance our understanding of the ecological effects of plant root exudates in plant-microbe interactions and help to reveal the relationship between tobacco bacterial wilt and the autotoxins and allelochemicals that accumulate from root exudates.

  相似文献   

19.
Summary The cloning, expression and nucleotide sequence of a 3 kb DNA segment on pLS206 containing a xylanase gene (xynB) from Butyrivibrio fibrisolvens H17c was investigated. The open reading frame (ORF) of 1905 by encoded a xylanase of 635 amino acid residues (Mr 73156). At least 850 by at the 3 end of the gene could be deleted without loss of xylanase activity. The deduced amino acid sequence was confirmed by purifying the enzyme and subjecting it to N-terminal amino acid sequence analysis. In Escherichia coli C600 (pLS206) cells the xylanase was localized in the cytoplasm. Its optimum pH for activity was between pH 5.4 and 6, and optimum temperature 55° C. The primary structure of the xylanase showed a significant level of identity with a cellobiohydrolase/endoglucanase of Caldocellum saccharolyticum, as well as with the xylanases of the alkaliphilic Bacillus sp. strain C-125, B. fibrisolvens strain 49, and Pseudomonas fluorescens subsp. cellulosa.Abbreviations ORF open reading frame - pNPCase p-nitrophen-yl--d-cellobiosidase - (xynB) gene coding for XynB - XynB xylanase  相似文献   

20.
We characterized a Trichoderma viride strain that is resistant to the antimitotic drug methyl benzimidazole-2-yl-carbamate (MBC). This species has two -tubulin genes (tub1 and tub2) and by reverse genetics we showed that a mutation in the tub2 gene confers MBC resistance in this strain. Comparison of the tub2 sequence of the mutant strain with that of the wild type revealed that a single amino acid substitution of tyrosine for histidine at position 6 is responsible for the MBC tolerance. Furthermore, we showed that this gene can be used as a homologous dominant selectable marker in T. viride transformation. Both tubulin genes were completely sequenced. They differ by 48 residues and the degree of identity between their deduced amino acid sequences is 86.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号